
VISUAL ENGINEERING
KavaChart Developer Documentation

KavaChart
ProServe

Users Guide

V E R S I O N 5 . 0

KavaChart ProServe Users Guide

2004 Visual Engineering, Inc.
164 Main Street • Second Floor • Los Altos, CA 94022

Phone 650.949.5410 • Fax 650.949.5578

Table of Contents
ChartTags Hide Complexity 25 KAVACHART INTRODUCTION 5

What is KavaChart? 5 Using a Servlet for Image Content 26
Servlets Can Generate Image Data Directly 27
The useCache Property 28 Ways to use KavaChart 5
The byteStream Property 28 KavaChart on the Server 5

The KavaChart Wizard 6
KavaChart Server Objects and ASP 28

QUICK START GUIDE 7 KavaChart’s Image Cache 30
Unique Names for Unique Charts 30

Getting Started 7 Setting “writeDirectory” 30
Using CacheCleaner 32

Sample Code 8
Tooltips and Hyperlinks 35

Tooltip Labels in JavaScript 38
TERMINOLOGY OVERVIEW 11 Hyperlinks 38

Chart Parts 12 Using ChartServlet 41
X Axis and Y Axis 12 ChartServlet Properties 42
Plotarea 13
Background 14
DataRepresentation 14 KAVACHART SERVER OBJECTS: METHODS

AND PROPERTIES 45 Legend 15

Programmer Overview 15 Server Object Methods 47
Data 15

Image Management Properties 48
KAVACHART PROSERVE IMAGING
OPERATIONS 17 Tooltip and Hyperlink Properties 50

Data Related Properties 51 Benefits and Drawbacks to Using Server Objects
 17 Supplying Data with Properties 52

Dataset Properties 53 Complete Control 17
Discontinuities 54 Images Can Be Saved 17
Time oriented charts 54 “Local” Data Stores 17
Managing Date Formats 55 External Requirements 18

Centralized Imaging Load 18
Using DataProviders 56

Important Dataset Constructors and Methods 56 Servers and Image Streams 18
Most server transactions send a single content type
 18 Color and Style Properties 59
Server-side image cache 19 General Color and Font Properties 60

Axis Related Properties 64
Date and Time Axis Properties 66 Various Imaging Approaches Using KavaChart 21
Dataset Related Color and Style Parameters 67

KavaChart Server Objects and JSP Scriptlets 21
JSPs Emit Text, Not Graphics 21 SERVER CHART OBJECTS 69

Area Charts 69
KavaChart ChartTags and JSPs 25 Line and Scatter Charts 71

Bar and Column Charts 73 ChartTag Attributes 107
Pie Charts 76 Style 107
Combinations: Bar-Area Chart 77 reloadStyle 108
Combinations: Bar-Line Chart 78 chartType 108
Speedos 79 useLinkMap 108
Radar Charts 80 resourceBundleID 108
Bubble Charts 80 resourceBundleBaseName 108
Gantt Charts 81 cacheDirectory 109
Sectormap Charts 82 codebase 109
Combinations: Bar-Area Chart 83 archive 109
Combinations: Bar-Line Chart 84 streamServletName 110
Candlestick and OHLC Charts 85
Stick Charts 86 Table Tag Attributes 110
Combination Charts 86 rowwise 110
Combinations: Multiple Axis Charts 87 useYVals 110

useY2Vals 110
useXVals 110 Using a Properties Object or File 90

Property Files 90 useY3Vals 111
Constructor Properties 91 useLabelVals 111

useDatasetName 111
dateFormat 111

IMAGE FORMAT RECOMMENDATIONS 93 tableClass 111
GIF 93 cellClass 111
JPEG 93 columnHeaderClass 112
PNG 94 rowHeaderClass 112
Flash 94
SVG 94
BMP 95 INNER TAGS 113
Other Formats 95
External Formats: PostScript, GIF Transparency 95 Non-Data Tags 113

Param 113
Locale 113

JSP CHARTTAG OVERVIEW 96
Data Manipulation Tags 114

Setup 96 Datafilter 114
Integrate Taglib Descriptor and web.xml 96 Datasimulation 114

Timedatasimulation 115
Create a Chart Style 96 dataarithmetic 116

Use the ChartWizard 96 datatransposer 116
dataaccumulator 117
datahistogram 117 Create a DataProvider 98
datapercentchange 118 Install your DataProvider 100
dataregressionfeed 118
datasorter 119

Edit Your JSP 101
Add a Chart Tag 101

DataProvider Interface 120
Important Dataset Constructors and Methods 120

Variations 102
Localization 102

Web.xml 123 Data Manipulation 103
Image vs. Applet 103

HEADLESS SERVER OPERATION 124
CHART TAG DETAILS 105

COLDFUSION MX SERVER SETUP 127
Design Goals 105

Taglib Statement 105
Installation and Setup 127

The Chart Tags 106
Run The Example 128 Cached ChartTag 106

Streamed ChartTag 106 Integrating ColdFusion Data Sources With
KavaChart ProServe 128 Balanced ChartTag 106

Applet ChartTag 107
Table ChartTag 107

DATAPROVIDER GUIS 131

DataProviders in the Wizard 131

INSTALLING A LICENSE KEY 133
Obtain a license key 133
Put the key in your CLASSPATH 133
Run the Examples 133

INDEX 135

Chapter

1
KavaChart Introduction
This chapter provides a broad overview of some of the ways
you might use KavaChart to put charts into your
application.

What is KavaChart?
KavaChart is a collection of tools for turning numbers into charts. Given one
or more series of numbers, KavaChart can create a variety of common charts to
help you absorb and interpret the information. KavaChart tools provide
robust, well tested components that let software or web site developers translate
numbers to graphics with minimal effort.

KavaChart is implemented in pure Java so that it can be used on virtually any
computer operating system, ranging from mainframes to PDAs. The charting
tools can be used from within HTML pages, Java applications, and various
server technologies.

Java programming expertise is not required to use KavaChart, but we assume
that our users will have some familiarity with one or more relevant technologies,
such as HTML, applets, server scripting, servlets, database access, or object
oriented programming. KavaChart is a complement to any of these skills.

Ways to use KavaChart
KavaChart can be used in a variety of ways. Many HTML pages include
KavaChart applets that adjust automatically with dynamic data. Other web sites
prefer using KavaChart to generate chart images on the server. KavaChart can
be used to add charts to Java application programs. KavaChart can also be
embedded within other tools, such as EJBs (Enterprise Java Beans) to add
charting functions.

KavaChart ProServe is specifically targeted to programs that run on an
application or web server to generate image output. This product includes
tools for extending the “tags” you’re using in a Java Server Page (JSP), as well as

KavaChart on the
Server

 5

a collection of flexible chart objects that will translate data into chart output for
a variety of environments.

These chart "beans" are encapsulated objects that will translate a set of property
values into an image file. They’re the basis for KavaChart’s server chart imaging
operations, so it’s useful to understand how they operate.

 These beans use a set of string pairs to describe the overall chart appearance,
defining things like title strings, colors, and legend definitions. These objects
also include imaging code and server cache management logic to generate
almost any image format. They can take data from a variety of sources,
including definition strings compatible with KavaChart applets, or from classes
that implement the simple KavaChart DataProvider interface.

These beans, or the KavaChart custom tags that use the beans, will also generate
imagemaps that can be embedded into an HTML page for hyperlinks and
tooltips, and they include specific methods to add watermarks, overlay images,
and copyright notices.

Note:

Although this document refers to KavaChart ProServe output
using the word “image”, you can also produce other formats, such
as Macromedia Flash output or Scalable Vector Graphics.

The KavaChart custom Tag library is probably the best way to use these server
objects in a JSP environment. These preconfigured Tag classes let you separate
your data acquisition from your page presentation with simple, intuitive XML-
like expressions. The tags also provide a way to easily apply ResourceBundles
for localization, and to implement persistent data sources for applications that
share data.

Beyond KavaChart's preconfigured server tools, the Enterprise Edition API
gives you all the tools you need to build your own server charting tools.

KavaChart ProServe licensees can design charts by hand, using a text editor and
documentation about KavaChart’s server object properties. It’s a lot easier,
though, to design your charts visually, using the KavaChart Wizard. This on-
line tool provides a graphical interface for designing chart appearance, and the
ability to combine your local data sources with chart designs. The Wizard
produces complete output templates for a variety of server technologies and
data sources.

The KavaChart
Wizard

The KavaChart Wizard is on on-line tool available to all KavaChart users, with
enhanced capabilities available to licensed users and maintenance subscribers.

 6

Chapter

2
Quick Start Guide
If you’re the kind of user that wants to see results ASAP, follow this
quick start guide to get KavaChart busy producing images right away.
You can then poke around with the examples and get an overall
understanding of KavaChart ProServe, and then come back to this
guide for a more detailed reference.

The first step in using KavaChart ProServe on your own server depends
somewhat on your server. If you’re using ColdFusion MX, scan through this
chapter, and then check Appendix B for information about setting up your
server’s configuration files and using ColdFusion data sources.

Getting Started
If you’re using a standard J2EE server that supports “.WAR” web archive files,
the easiest way to see KavaChart ProServe in action is to let your server install
“kavachart.war”. Generally, you can simply place this file into your server’s
“webapps” directory, and then browse the “/kavachart” application.

This “application” is really just a collection of Java Server Pages that
demonstrate a variety of ways to use KavaChart. Feel free to modify these JSP
files to experiment with KavaChart and get a feel for how it might be used with
your application.

The application hierarchy created by “kavachart.war” looks like this:

 7

WEB-INF
Classes

Web.xml/ Kavachart-taglib.tld

Examples/*.class

Lib/kcServlet.jar

documentation

Sample C

<%@
<js
<ch

Kavachart

Tag-samples

Scriptlet-samples

*.properties (tag stylesheets)

Temporary files

*.jsp

*.jsp

Images/KavaChartImages

The top-level directory index contains links to various JSP samples, summary
HTML documentation, and the on-line Chart Wizard.

If you’re not using “kavachart.war” to create an initial installation of KavaChart,
you’ll need at least “kcServlet.jar”, which contains the Java classes and other
resources used in KavaChart ProServe.

If you also want to use KavaChart’s tag library (recommended), you’ll need to
integrate “web.xml” with your own, and add “kavachart-taglib.tld” to your
server’s configuration information. You can find more detailed information
about this in Chapter 8.

ode
The demos are divided into two categories: JSP scriptlets and JSP tag examples.
You can also use KavaChart ProServe to create your own image-generating
servlets. In general, the tag library simplifies your page creation and maintenance
tasks dramatically, but you’re free to choose the technique that best suits you
application.

Here’s a minimalist example from the tag library examples:

 taglib uri="/WEB-INF/jsp/kavachart-taglib.tld" prefix="chart" %>
p:useBean id="foo" class="examples.RandomNumberDataProvider" />
art:streamed style="WEB-INF/paramchart.properties"
 chartType="columnApp"
 dataProviderID="foo" />

This code produces a chart that looks like this:

 8

Styles for this chart are taken from the file “WEB-INF/paramchart.properties”.
Data is provided by an example DataProvider called
“RandomNumberDataProvider, available in source code in the “WEB-
INF/classes/examples” directory.

The generated chart includes tooltip labels that describe the charts data as you
pass the cursor over each bar.

Note:

If your server is generating an error instead of a chart, and you’re
using a Unix server, you may need to set the System property
“java.awt.headless” to “true”. See Appendix A for more
information about this important property.

Here’s a simple JSP scriptlet that generates a similarly simple chart:

<%
 //add some random data here:
 for(int i=0;i<5;i++){
 double d = Math.random();
 chart.accumulateProperty("dataset0yValues", Double.toString(d));
 }

 //set a few other properties to make the chart look nice
 chart.setProperty("width", "400");
 chart.setProperty("height", "250");
 chart.setProperty("titleString", "hello, world");
 chart.setProperty("writeDirectory", application.getRealPath("/images"));
 chart.setProperty("yAxisOptions", "gridOn, minTickOn");
%>
<center>
<img src=”/images/<%= chart.getFileName() %>”>
</center>

Notice that KavaChart server beans operate by setting various string property
pairs, described in detail elsewhere in this document. The same property pairs
are used for chart tag “styles”, which are really just Java properties files.

 9

In the scriptlet example, one property in particular merits close examination:
“writeDirectory” describes where this server object should write a chart image.
In our example, we’re using the servlet utility method “getApplicationRealPath”
to locate the images directory in a portable way.

To produce the chart, the scriptlet calls the object method “getFileName()”, and
places that file name in an HTML tag.

If you get an error message instead of a chart when you run this JSP, and you’re
running on a Unix-based server, you might need to set up your server’s graphics
environment. If you’re running JDK 1.4 or newer, try adding this line to the top
of your scriptlet, and then restart your server:

<% System.getProperties().setProperty(“java.awt.headless”, “true”); %>

If this workaround gets your charts running, add “-Djava.awt.headless=true” to
your server’s startup script.

If you’re seeing charts, go ahead and experiment with the demo samples. You
should find something similar to your own requirements, and be able to see
fairly quickly how to integrate KavaChart ProServe objects into your own
application. The Chart Wizard can be used to generate properties files or styles
to replace the versions provided in the demos.

Use this manual and the KavaChart Wizard as a reference guide to refining your
own application’s charting capabilities.

 10

Chapter

3
Terminology Overview
It’s helpful to understand KavaChart’s terminology. Here’s a visual description
of some of the most basic terms:

KavaChart charts use a standard set of graphical and non-graphical components
to do the work of representing your data. To get the most out of your charts, it's
helpful to understand how KavaChart refers to these components and how they
fit together.

Background

Plotarea

X Axis

Y Axis

Data Representation
(Bar, line, etc.)

 11

Chart Parts

X Axis and Y Axis

X Axis

Y Axis

Y Axis

X Axis

Axes can occur on the left, right, top or bottom of a Plotarea. A Y axis scales for
Dataset Y values. Normally, these are represented vertically, and the Y axis is
vertical. Horizontal Bar charts, Speedo charts, and Pie charts are exceptions.

X axes scale for Dataset X values. For some charts, such as a Column chart or a
Stacked Column chart, the X axis distributes the data evenly along the X axis,
regardless of the Dataset's X values.

Several different types of Axes exist in KavaChart charts. A basic Axis
automatically creates an aesthetically pleasing scale, arranged in even increments.
An Axis can also scale logarithmically, which is appropriate for data with
extremely wide variation. Some specialized axes, such as the DateAxis, are
designed to handle specialized data. DateAxis arranges increments in months,
weeks, or some other appropriate time value. A LabelAxis, such as those used
for Column charts, will use user-defined labels. If no user-defined labels are
present, the axis will try to determine appropriate labels.

 12

Axes contain a number of elements that can be visible or not visible. These
include the axis line, tick marks, minor tick marks, an axis title, labels, and grid
lines. You can define the color of these elements, and in the case of labels and
titles, the font. Labels can also use a number or date format of your choosing.
By default, time and numeric labels are automatically localized for various
locales.

Axes can be automatically scaled, semi-automatically scaled (you set the start and
end, and let the axis determine labelling and increments), or manually scaled. A
non auto-scaled axis requires you to set tick, grid, label, and minor tick counts as
well as the axis start and end values.

Plotarea

Plotarea

A Plotarea is the region bounded by an X and a Y Axis, which contains a
DataRepresentation (such as a Line, Bar, Area, etc.). A Plotarea has a size and
location determined by the upper right and lower left corners. The values that
define the Plotarea size and location are percentages, relative to the overall chart.
For example, an upper right corner value of (0.75, 0.75) means that the top of
the Plotarea will be at 75% of the height, and the right side of the Plotarea will
be at 75% of the width.

A Plotarea also has a user defined color and outline color.

By changing the size and location of your Plotarea you implicitly change the size
of your chart's margins. All Axis and DataRepresentation geometries will
automatically adjust to accomodate your Plotarea definition.

 13

Background

Background

The rectangle underlying the entire chart is called a Background. The
background also contains a title and sub-title. You can set the color of the
background or use an image for the background if you prefer. You can also set
the color and font of each of the title strings.

DataRepresentation

Data Representation

A DataRepresentation is the name KavaChart uses for a variety of objects.
These include Line, Area, Bar, and Pie, as well as other more specialized
DataRepresentations. These items visually describe a group of Datasets. For
example, bar DataRepresentations exist that draw multiple series horizontally or
vertically, and side by side or stacked. Bars also exist to represent high and low
values, and to draw hi-lo-close, candlestick, histogram and other industry-
specific visuals.

DataRepresentations obtain graphical information like colors and label fonts
from the Datasets represented. Additionally, the X, Y (and other) magnitudes, as
well as the bar/pie/etc. labels are derived from information in the Datasets.

Because DataRepresentations provide specific visual representations, they often
have specialized properties. For example, bars can have variable cluster widths
(the width of one group of bars), pies can vary the starting angle and toggle
visibility on percent labels, speedos can have various types of needles, and so on.

 14

Legend

Legend

A Legend contains a description of the Datasets in a particular chart. The icons
and label text comes from the chart's Datasets. The X and Y values of a legend's
lower left corner describe the legend's location. These values are in percentages
of the overall chart. For example, a location of (0.5, 0.5) would place the lower
left hand corner of the legend exactly at the center of your chart (50%, 50%).

Legends can have a background color, label font and font color. They can be
arranged horizontally or vertically. You can also adjust the size of the legend's
icons and the gap between the icon and the legend text (again, in percentages of
the overall chart). Legends that are too large for the space you have defined will
attempt to create a table of entries (rows and columns).

Various types of legends exist. These include standard Legends, which describe
each dataset with a Dataset name and a rectangular icon, Pie legends, which
describe each element in the first Dataset with an icon and the element name,
and LineLegends, which use a line and optional marker for each Dataset.

Programmer Overview
KavaChart charts use a standard set of graphical and non-graphical components
to do the work of representing your data. To get the most out of your charts, it's
helpful to understand how KavaChart refers to these components and how they
fit together.

KavaChart arranges data into Datum and Dataset classes. A Datum class stores
information for a particular observation, including values, labels, and graphical
information. In a pie chart, each slice represents one Datum class. These classes
store the slice values, colors, and labels. Datum classes are also represented by
bars in a bar chart, points on a line or vertices of an area chart.

Data

Dataset classes are used to organize Datum classes into a series or group.
Datasets also contain a series name and common graphical attributes, like a line
color or fill color. A bar chart with 2 groups of bars will contain 2 Datasets, each

 15

with Datum classes that contain the actual numbers that define the size of the
bars. The color of each series will be defined by its Dataset. The name that
describes each icon in the chart's Legend is the Dataset name.

Tip:

Many applications need to manipulate data; either to update data
from a realtime feed, to reduce the amount of data in the current
view, or to let users modify the chart’s internal data. Since a
Dataset is simply a container for a java.util.Vector of Datum
classes, it’s easy to do most of these tasks by just working with this
data Vector.

There are many ways to define Datum and Dataset classes, including JSP
properties, applet params, Chart utility methods and bean datafeed classes.
Ultimately, however, the data will end up in Datum classes, organized into
Datasets.

Most server applications should obtain data from a “DataProvider” class, which
supplies Dataset classes to chart definitions. See the sample chart pages for
examples of DataProvider, Dataset and Datum classes in action.

 16

Chapter

4
KavaChart ProServe
Imaging Operations
 This chapter discusses server based charting in general, and gives a broad
overview of KavaChart’s factory server components. It also discusses
some operational details, such as server image-cache management.

Benefits and Drawbacks to Using Server Objects
Since KavaChart lets you create your charts using applets on the client or using
server objects, let’s examine the benefits and drawbacks of using your server to
create chart images.

Control is the overriding issue for most developers that want to create chart
images at the server. These developers don’t trust that every client machine and
browser will be configured in a way that ensures that applets will run
consistently. And if the applets don’t run consistently, then the charts won’t
always look the same on every machine. You can be reasonably certain that an
image generated at the server will look the same on every client. It doesn’t
matter whether they’re using the latest browser revision on Linux, an old
Macintosh at home, or even a wireless device with an experimental browser.
Images will always look the same.

Complete Control

One distinct advantage of server-generated images is the ability to treat these
images like any other image at the client. Users can copy images to the
clipboard, save the image into a file, and so on. Since applets are live program
code, they can’t be copied and pasted like image data.

Images Can Be
Saved

A perceived advantage of server objects lies in their nearness to enterprise data
storage. Most application and web servers have the means to access databases
in an efficient way, using pre-existing connection pools, database drivers, and
other tools that are better suited for server use than applet use. Even though
you can generate data to populate applet parameters, generating a chart image
seems like a natural extension of other server activities, like building tabular
displays.

“Local” Data
Stores

 17

Often, the developer doesn’t get to choose where a chart is rendered. Someone
else has already decided that a document must include dynamically generated
chart images. Sometimes this is just the result of misinformation or bad
experiences with poorly written applets.

External
Requirements

By generating your charts on the server instead of sending applet definitions to
your clients, you’re assigning the task of imaging every chart to your application
or web server. It might not seem like a big deal, but the compute load can be
significant for busy servers. Each image is first rendered in memory. The raw
image memory is 24 x 500 x 300 bits, or nearly half a megabyte for a small chart
image. Add to this whatever overhead is involved in managing fonts, colors,
transparency, antialiasing, imaging encoders, etc., and you get some idea of
what’s going on behind the scenes.

Centralized
Imaging Load

Even though modern application servers and virtual machines are very good at
load management and memory management, applets give you a way to
distribute these tasks automatically.

Servers and Image Streams
Many applications require a mixture of text and graphics information to be sent
from server to client. In a simple HTML page, one HTTP request retrieves the
overall text for a page or document. The server identifies the contents of the
request as HTML or text, and streams the information to the browser. This text
includes markup tags like this:

This tag causes the browser to make another HTTP request for the image file.
In response, the server sends the contents of the image file, with a header that
identifies the content-type as image information.

The browser decodes this byte stream with the appropriate image decoders, and
displays the image according to the overall page layout, which was defined by
the initial HTML text.

For most web developers, this process seems completely obvious. However it’s
important to keep it in mind when you’re developing applications that generate
dynamic graphics, because pages with dynamic content usually have dynamic
text as well as graphics.

Most server
transactions send
a single content
type

Servers can use KavaChart directly to stream image bytes to clients. For
example, if your server supports Java servlets, you can use
com.ve.kavachart.servlet.ChartServlet to create a stream of image bytes. This
servlet sets the output’s content-type to the appropriate image format, builds an
in-memory version of the chart, encodes the data in some compression scheme
(such as JPEG, PNG, etc.), and sends it directly to the browser in a single
HTTP transaction.

 18

However, the result is a chart image without any textual context. No page titles,
no descriptive tables, no explanation, no formatting, just a bare chart image.
This isn’t particularly useful for most real world applications.

It’s also possible to create separate server objects that generate the text content
and the graphics content. The first component would generate output with a
content-type of text, and the second would create output with image content. If
you’re retrieving information from a database, however, this means you’ll have
to do multiple database transactions to get information you could retrieve with a
single transaction.

You could also explore creating a more exotic document that has multiple
content-types, with content type delimiters and mixed multimedia headers. Of
course, you’ll also have to maintain a fairly complex code base in the future.

Finally, you could create a communication mechanism to let your text-
generating object communicate with your chart-generating object. In a typical
multi-threaded server environment, however, you’ll have to create a significant
amount of code to make sure each set of text-plus-image requests is processed
independently.

Note: In a JSP, KavaChart’s Tag library solves most
imaging problems

If you’re generating images for a Java Server Page, use
KavaChart’s custom ChartTags to automatically manage image
generation and retrieval. See the chapter below for more
information about ChartTags.

One solution to this problem is to create the text content and image content at
the same time, but store the image content on the server to be retrieved in a
separate transaction.

Server-side image
cache

In this case, our server object might create text output like this:

<html>
<p>the number is 1.432</p>

</html>

When our object creates the output, it also creates the image file “image.png”.
The client makes another request for the image file, since it’s needed to
complete the page.

One problem with this approach is that it leaves an image file on our server.
Since we’re reasonably certain that the file will be used soon, we can remove the
file with another process, such as a Unix “cron” job, or a Windows scheduled

 19

task. We could also use a thread on our server to remove this file at some time
in the future.

Another potential problem lies in the contents of the image file. If we always
name our output file “image.png”, then we might have problems in a busy
server. If user 1 and user 2 request the dynamic page at approximately the same
time, it’s possible that user 1 will get the “image.png” file created for user 2.

KavaChart’s server charting objects give you a variety of ways to create image
output, but the best mechanism for most applications uses something like the
image cache approach described above.

Image Cache: The
KavaChart Approach

KavaChart server objects create chart images based on a set of properties. Each
property has a name and a value. For example, the property “titleString” might
have a value of “hello, world”. The property set, combined with charting data,
defines the complete chart image. This image can be created in memory and
retrieved as an array of bytes (encoded in some standard format, like JPEG or
PNG), or it can be written to a server file.

By default, the name of the server file is based on an algorithm that considers all
the chart properties to ensure that unique charts will have unique file names.
You can override this naming convention, but you’ll have to deal with the
possible problem of users contending for the same filename, described above.

KavaChart also employs a special server object, CacheCleaner, that will
periodically remove files that are older than some specified age.

If you’re using the Tag library, images can be cached in memory (the streamed
tag), and then automatically cleared from memory when the request has been
fulfilled.

Since KavaChart’s unique filenames are based on the chart’s properties, identical
charts will have identical names. By default, KavaChart calculates the filename
before creating a chart file, and won’t generate an image file if it already exists in
a cache directory. This means you can use the KavaChart naming convention
as an automatic image cache for frequently requested charts.

For example, if you have a set of company-wide reports that changes every day,
these charts will be generated into server files when the first user requests them.
For every other user, the KavaChart objects calculate the filenames, examine the
cache, and use the pre-existing image files. You could run CacheCleaner
automatically, or run it in a Thread that removes files older than 24 hours, and
automatically keep only the image files needed for today’s reports. This
approach can dramatically boost the performance of an image server under the
right circumstances.

Even if you’re using KavaChart to retrieve image byte arrays, you can use this
approach. KavaChart objects will write the image files upon the first request,.
Afterwards, the objects will just read the data from the files to construct image

 20

byte arrays, rather than doing the more compute-intensive imaging and
encoding tasks involved in initial chart rendering.

Various Imaging Approaches Using KavaChart
You can create server images with KavaChart in a variety of ways. KavaChart
ProServe includes a range of server objects that can be used directly, in a servlet
or scriptlet, or you can use the KavaChart factory ChartTag classes to
encapsulate the details of generating image data.

The KavaChart server bean approach, described briefly above, uses paired
properties to define a chart. You can also extend these objects to add overlay
drawing, data acquisition, and other common behaviors. These activities are
described later in this chapter.

KavaChart ProServe objects offer many advantages over creating your own
server chartig tools: They’ve been well tested, and are used in thousands of
installations. They support virtually all the popular image encoders you might
need. They include support for hyperlinking (client side imagemaps) and tooltip
labeling for all popular browsers. They’ve also been around long enough to go
through several performance enhancements and revisions. They even include
method stubs to let you install your own image encoders or other output
mechanisms.

Perhaps equally important is that KavaChart ProServe objects are 100%
compatible with KavaChart applets. The same parameter pairs used by
KavaChart applets can be redeployed as server object properties. This gives you
a way to easily switch between server chart imaging and client chart imaging.

If you’re using Java Server Pages, this compatibility is underscored with
KavaChart ProServe’s ChartTags. These tags let you switch from server-side
imaging to client-side imaging (applets) with a single key word.

KavaChart Server Objects and JSP Scriptlets
Java Server Pages provide a convenient way to create dynamic content within an
HTML context. These pages are a hybrid of HTML statements and Java
program code. The first time a JSP is accessed, the server compiles it into a
servlet. Subsequent accesses call the appropriate “service” methods of this
servlet.

Because JSPs are designed to mix dynamic programmatic content into text and
HTML content, they set the output’s content-type to text/html. Any graphics
you send through a JSP must also be text/html. To do this, your JSP will send
an IMG tag as a part of its output. If you want this image to be a dynamically
generated chart, the IMG tag must point to either an image file created by the
JSP, or another URL that will create the image dynamically.

JSPs Emit Text,
Not Graphics

 21

In the example below, our JSP creates a very simple page using a KavaChart
server object to build a chart image.

<html>
<head><title>Simple Chart Generation</title></head>
<body bgcolor="white">

<%

com.ve.kavachart.servlet.Bean chart =
 new com.ve.kavachart.servlet.barApp();
 //add some random data here:
 for(int i=0;i<5;i++){
 double d = Math.random();
 chart.accumulateProperty("dataset0yValues", Double.toString(d));
 }

 //set a few properties to make the chart look nice
 chart.setProperty("titleString", "hello, world");
 chart.setProperty("writeDirectory", "webpages");
 chart.setProperty("yAxisOptions", "gridOn, minTickOn");
 chart.setProperty("xAxisOptions", "gridOn");
 chart.setProperty("plotAreaColor", "lightGray");
 chart.setProperty("width", "400"); chart.setProperty("height",
"200");
%>
<p>
Here's the chart:

<img src=/<%= chart.getFileName() %>>

</body>
</html>

 22

This JSP creates a page that looks like this:

Here’s the chart

The HTML portion of this page consists of some headers and a one-sentence
paragraph. The graphics are generated automatically by a KavaChart server
object. Because this chart displays a series of random numbers, a new image file
will be generated each time the page is reloaded. Here’s the HTML created by
the JSP:

<html>
<head><title>Simple Chart Generation</title></head>
<body bgcolor="white">

<p>Here's the chart:

</body>
</html>

The only thing added to the JSP output by the KavaChart server object is the
strange name of a JPEG file, “03e2c9f00aff12534c4896a0309.jpg”. The client
machine will request this file from the server in a separate HTTP transaction,
which returns the image content.

Behind the scenes, here’s what happened:

The JSP created an instance of KavaChart’s “barApp” object.

The object’s accumulateProperty method was called repeatedly to add data.

The object’s setProperty method was called to set a title, size, plotarea color,
and to turn on axis grids.

The chart’s “getFilename” method was invoked, which triggered the actual
chart computation:

 23

The properties were examined and a filename was calculated that
identified this unique chart.

The chart object checked the server’s cache directory (set with the
“writeDirectory” property) to see if the file had been previously
created.

Since no previous image with this name existed, an internal chart
was created. Note: if the file already existed, this would have been
returned immediately to the JSP.

The properties were examined and the internal chart was modified
accordingly: data was added, the title string set, plotarea color was
changed, and so on.

An image was created in memory and the internal chart was drawn
to the image.

Pixels were then extracted from this image, and the data was passed
through a JPEG image encoder.

Finally, the image was written to the caculated filename, and the
filename was returned to the JSP.

The filename was placed on the JSP’s output stream, within an IMG tag, so
the client can make another HTTP request for the image content.

Note that the JSP wrote a file on the server somewhere, and that the HTML
points to an image somewhere on the server. “Somewhere” needs to be the
same location. In our example, the JSP wrote the file in a directory named
“webpages”, and the HTML output assumed the file exists in the same
document base as the HTML output.

Servlets have a convenience method that can help you write your images in the
proper location. A ServletContext’s “getRealPath” will return a fully qualified
directory path based on a relative URL. For example, if you want to put your
chart images into a directory that appears as
http://yourserver/dynamic_charts/ on the web, write your images into
the actual directory returned by
getServletContext().getRealPath(“/dynamic_charts/”). Set the
directory you’re writing your charts into with the “writeDirectory” property.

Use “getRealPath”
to find your images

Note:

JSP implementations use an instance variable “application” that
will return a servlet context appropriate to a specific web
application. If your web server supports this, you can write your
images into a directory specified like this:

 24

chart.setProperty(“writeDirectory”,application.getRealPath(“char
t_cache”));

See the section below for more information about how KavaChart’s server
image cache operates.

KavaChart ChartTags and JSPs
Although the scriptlet described in the section above is fairly intuitive to a Java
programmer, it’s not necessarily intuitive to your page designers. The JSP will
also become much more complicated when you start to add realistic data
sources, such as those from database connection pools, resultset adapters, and
so on.

JSP includes a facility to define custom XML-like tags that perform Java
processing. KavaChart ProServe includes a collection of Tag implementations
that apply this concept to chart generation.

ChartTags Hide
Complexity

ChartTags use KavaChart server objects to create chart image streams, but
encapsulate the processing into a simple tag. The tag does some compile-time
checks to make sure the arguments are formed properly, and then expands into
a part of the servlet created by the JSP.

Perhaps even more important than intuitive encapsulation, ChartTags give you a
way to separate your chart data sources from your chart style to make your code
more re-usable and testable. Similarly, ChartTags hide the details of chart
localization and ResourceBundle application.

The example below uses a ChartTag to duplicate the functionality of our
previous JSP scriptlet.

<html>
<head><title>Simple Chart Generation</title></head>
<body bgcolor="white">

<%@ taglib uri="http://www.ve.com/kavachart-taglib" prefix="chart" %>
<p>
Here's the chart:

<chart:streamed

style="WEB-INF/simplechart.properties"
chartType="barApp"
dataProviderID="foo" >

</chart:streamed>

</body>
</html>

 25

Although the page looks like HTML/XML, the ChartTag becomes servlet code
when it’s compiled by the JSP compiler. This code creates a “barApp” server
object, like the previous scriptlet. The style properties for this chart are
contained in a properties file located in “WEB-INF/simplechart.properties”.
The data for this chart comes from a DataProvider class placed into the page
context with an attribute ID of “foo”.

One significant difference, compared with the scriptlet, is that the image is
streamed back to the page without being written to the server’s filesystem. How
is this possible, since the page contains both text and graphics? ChartTags use a
special servlet to store images to be streamed back when requested. The
resulting HTML from this tag contains an IMG statement that looks like this:

<IMG
SRC="/servlet/com.ve.kavachart.servlet.ChartStream?sn=39cd
7cec8210c44f">

The servlet stores the image stream in memory temporarily, and deletes it after
completing the request.

ChartTags are designed to be more efficient than most scriptlets. They
implement optimizations to make sure re-used information persists in memory,
while transient information is regenerated. They separate data from
presentation in a way that makes it easier to test your data sources in a non-http
context, even with chart designs, using the KavaChart Wizard. They make it
harder for non-programmers to make mistakes in pages that contain charts.
They also accommodate custom extensions you make to KavaChart’s server
objects.

If you’re using JSP to generate your charts, ChartTags are probably the best way
to implement your applications.

Using a Servlet for Image Content
Servlets provide more flexibility than JSPs in generating server output. In
addition to text and HTML output, servlets can produce various types of media
streams, including image streams. For example, it’s perfectly acceptable to place
and IMG tag in your HTML that looks like this:

This snippet assumes that “ChartGenerator” will produce a stream of bytes
recognizable as image data by the browser. The image data must not include
extraneous text, tables, etc., and the servlet must identify the output’s content-
type as some sort of image.

 26

This approach does have some advantages. First, it doesn’t require the server to
generate an image file. The byte stream can be created in memory directly. It
also provides some portability in situations where you might need to generate
the same chart for several different pages.

There are also some significant disadvantages to this approach. You can’t take
advantage of the performance boosts available from server image caches. You
will also need to create separate server code for dynamic text output and
dynamic image output. This might make database accesses inefficient or
complicated.

Servlets Can
Generate Image
Data Directly

The code below creates the same chart we created in our JSP example above,
but sends the output as a stream of bytes.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SimpleChartServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {
 com.ve.kavachart.servlet.Bean chart =
 new com.ve.kavachart.servlet.barApp();
 //add some random data here:
 for(int i=0;i<5;i++){
 double d = Math.random();
 chart.accumulateProperty("dataset0yValues",
 Double.toString(d));
 }
 //set a few properties
 chart.setProperty("titleString",
 "hello, world");
 chart.setProperty("useCache", "false");
 chart.setProperty("byteStream", "true");
 chart.setProperty("yAxisOptions",
 "gridOn, minTickOn");
 chart.setProperty("xAxisOptions", "gridOn");
 chart.setProperty("plotAreaColor",
 "lightGray");
 chart.setProperty("width", "400");
 chart.setProperty("height", "200");
 ServletOutputStream out =
 response.getOutputStream();
 response.setContentType("image/png");
 out.write(chart.getImageBytes());
 }
}

The core of this servlet is nearly identical to the JSP example above. The servlet
creates a KavaChart server object (barApp) instance, and sets some properties.
The drawing and imaging activities are triggered by a call to the chart’s
“getImageBytes” method.

 27

One significant difference between the properties in the JSP example and the
properties in this example is the use of the “useCache” property. By setting this
property to “false”, we ensure that the server object generates a new image,
regardless of whether an image exists in the cache or not.

The useCache
Property

Another difference is the use of the “byteStream” property. By setting this
property to “true”, we’re telling the server object that we’re only interested in
byte streams, and that we don’t ever want to use the cache.

The byteStream
Property

KavaChart Server Objects and ASP
You may be surprised to find that KavaChart server objects can be used with
non-Java languages in non-traditional Java server environments. The most
prominent of these environments is, of course, Microsoft’s Active Server Page
environment, built into IIS servers.

By placing KavaChart’s classes into a Windows 2000 Java CLASSPATH and
loading the chart objects with ASP syntax, you can generate chart images like
you can with any other Java enabled server.

The primary limitation, as of this writing, is that IIS does not have Java 2
support, so you won’t be able to take advantage of some of KavaChart’s
advanced imaging features, like texture drawing and antialiasing. Microsoft has
also dropped support for their Java Virtual Machine, so combining an
application server like Apache Tomcat with .NET may be a better alternative.

Here’s an example ASP that uses VBScript to build a chart:

<%@ LANGUAGE = VBScript %>
<%
'Create an instance of the chart object
Dim chart
Dim str
Dim chartData
Dim chartLabels
set chart =
getObject("java:com.ve.kavachart.servlet.barApp")
chart.setProperty "dataset0yValues",
 "123,453,345,654,345,654,567"
chart.setProperty "titleString",
 "Charting from ASP with Visual Basic"
chart.setProperty "writeDirectory","/Inetpub/wwwroot"
chart.setProperty "yAxisOptions",
 "gridOn, minTickOn"
chart.setProperty "xAxisOptions", "gridOn"
chart.setProperty "plotAreaColor", "lightGray"
chart.setProperty "width", "400"
chart.setProperty "height", "200"
chart.setProperty "imageType", "j_png"
%>
<p>
Here's the chart:

 28

<img src=/<%= chart.getFileName() %> >

</body>
</html>

Since you can access virtually all of KavaChart’s server objects’ functionality
with property string pairs, or zero-argument methods, you can use these objects
with any ASP scripting language, including VBScript and Jscript.

To make KavaChart accessible this way, unpack the server jar file,
“kcServlet.jar” into the windows “trustlib” folder. By default, this is located in
“C:\WINNT\java\trustlib”. You can unpack this with the “jar” command
from a Java Developers Kit like this:

jar xvf kcServlet.jar

This command will create a “javachart” directory that contains the necessary
charting packages and classes. Make sure you don’t change the location of class
files within this hierarchy. Java maintains its namespace by organizing classes
into parallel packages and directories (e.g. com.ve.kavachart.servlet.barApp must
exist in com\ve\kavachart\servlet\barApp.class).

This command will also create a META-INF directory, which isn’t necessary
and can be removed.

You can also use a zip utility, like the popular WinZip product, to unpack the jar
file. Jar files are compressed in zip format, with header information stored in
the META-INF folder.

Note:

When using a zip utility to unpack a Java jar file, make sure you
maintain the directory structure and file name capitalization.
Changes to either of these will result in Java class loader problems.

The example code above uses the JSP command “getObject” to load the
KavaChart server object. If you prefer to use the “CreateObject” method
available from the ASP Server object, first add the KavaChart objectes you wish
to use to the system’s registry. Microsoft provides a small program, “javareg”
for this purpose.

Consult Microsoft’s server documentation for more information on using Java
objects within IIS. As is generally the case, O’Reilly’s technical books on ASP
are also a rich source of information about using ASP.

 29

KavaChart’s Image Cache
To get the most out of KavaChart’s server objects, you must understand how
and why images are cached. As we discussed earlier in this chapter, application
and web servers are generally designed to send one content type at a time.

Most pages with dynamic chart images also have dynamic text content,
however. By default, KavaChart generates output into uniquely named image
files so you can centralize your code that retrieves data and creates dynamic
content. If your charts can be re-used, this file naming algorithm doubles as a
performance boosting image cache.

The key to this mechanism is an algorithm that can represent every visual
difference in a chart within the filename. Every KavaChart output image starts
with a generating class (such as com.ve.kavachart.servlet.pieApp), which has a
set of default values. Any change from the defaults is performed by setting a
property, using the “setProperty” method:

Unique Names for
Unique Charts

MyPie.setProperty(“titleString”, “Nice Pie Chart”);

The combination of the class name, the property strings and the property value
strings could give us a complete representation of the chart as one long string.
Unfortunately, this might become a very long string. It would be particularly
long for charts with a lot of data.

Fortunately, this is very similar to a problem that has already been addressed by
security experts. Java’s security classes give us some mechanisms to create a
compressed table of these strings that’s guaranteed to be unique. By creating a
digest of this table, we get a string that is guaranteed to uniquely represent a
particular chart.

Note:

KavaChart server objects don’t reject chart definitions that have
undefined properties. However, these properties are considered
when creating filenames. This means you can create artificial
differences between charts by adding properties of your own. For
example, if you set the property “now” to the system’s current
time in milliseconds, every chart would have a unique filename.
You may need to use an approach like this if you plan to create
object subclasses that create chart data without properties.

One of the most critical properties is “writeDirectory”, which instructs the
server object to write its output into a particular directory. This is the directory
your JSP or ASP will point to when it creates an IMG tag.

Setting
“writeDirectory”

 30

However, the server object has a different view of your server’s filesystem than
server clients do. Your server’s view of the filesystem looks like it would to a
local user. For example, your server’s root directory might be located at
“/usr/apache/wwwroot”, or at “E:\apache\wwwroot”. If you want to create
an image named “chart.jpg” that clients can find at
“http://yourserver/chart.jpg”, you would create that file in
“/usr/apache/webpages” or “E:\apache\wwwroot”.

The writeDirectory property tells the KavaChart server object which directory
you want to use for storing the output image. If we want to place our image in
the server’s root, and our server is configured like the example above, we would
set “writeDirectory” to “/usr/apache/wwwroot”, or “E:\\apache\\wwwroot”.

Note:

Because Java uses a “\” character to “escape” special characters,
you should use two slashes (“\\”), or a forward slash (e.g.
“E:/apache/webpages”) to specify your writeDirectory on
Windows based platforms.

Instead of using the server’s root directory, it’s usually better practice to put your
image files in a special directory for chart images. Not only does this prevent
clutter in your server’s root, but it also lets you use something like
CacheManager (discussed below) to automatically clear out old chart images.

Using our example above, we would just set “writeDirectory” to
“/usr/apache/webpages/chart_images” or
“E:/apache/webpages/chart_images”. We would also start with
“/chart_images/” as the prefix for chart images, and call the server object’s
“getFilename()” method to add the rest of the complete URL.

Note:

Servlets have a convenience method that can help you write your
images in the proper location. A ServletContext’s “getRealPath”
will return a fully qualified directory path based on a relative URL.
For example, if you want to put your chart images into a directory
that appears as http://yourserver/dynamic_charts/ on the
web, write your images into the actual directory returned by
getServletContext.getRealPath(“/dynamic_charts/”).
Set the directory you’re writing your charts into with the
“writeDirectory” property.

Image Cache Related Properties

 31

Property
Name

Value
String Description

 writeDirectory String

KavaChart writes image files into this directory. By default this is set to
"public_html/images". Since writeDirectory is "public_html/images" by
default, the server will attempt to write images into
$SERVER_ROOT/public_html/images/file_name. You can also specify
an absolute path, such as /usr/lib/webserver/images for this directory.
The write directory must be writable by the servlet engine, and readable
by the web server. NOTE: this property is currently disabled in
ChartServlet for security reasons.

useCache boolean

If "true", the server objects will attempt to use an image in the cache
directory matching this server object’s parameters. If "false" the image
will be generated each time. Note: if you are reading data by reference
(e.g. dataset0yURL) and the data changes from time to time, you should
either use this parameter to generate a fresh image, or clear the image
cache whenever your data changes. Image caching is enabled by
default. If useCache is false and byteStream is true, the bean won't write
any output to the server's disk. NOTE: this property is currently disabled
in ChartServlet for security reasons.

byteStream boolean
By default, the server objects write an image to disk, and then create a
file name to become part of an message to the
response OutputStream. By combining useCache=false and
byteStream=true you can avoid using the server's disk entirely. NOTE:
this property is currently disabled in ChartServlet for security reasons.

fileName String

An image file name for this servlet. By default, the server objects use a
Secure Hash Algorithm (SHA) to create a digest of all the parameters in
a given chart definition. This digest is used to create a filename that
uniquely identifies a chart defined by a given set of parameters. The
server object’s CacheManager looks for the unique SHA filename in the
image cache, and sends that image without regenerating it, if the image
exists. Any change in the parameters, even the addition of an unused
parameter, will create a new file name, and will cause the image to be
regenerated. You can override the default image name with this
property to force the image to be a specified name NOTE: this property
is currently disabled in ChartServlet for security reasons.

Although there are many advantages to writing image files on your server’s disk.,
there is one significant problem. Chart image files will accumulate on your
server, creating a mass of small files. CacheCleaner was created to address this
problem.

Using
CacheCleaner

CacheCleaner is a utility class that deletes old chart images periodically. This
class can run as a standalone application, or it can run within your server. If this
class is run within the server, it uses a single lightweight thread. If it runs
standalone, it will use an entire process.

This utility sleeps for a specified period of time (default 6 hours), and then
removes all the files in a specified directory (this should be a chart image cache
directory) older than a specified age (default 10 minutes).

CacheCleaner Method Effect
public void setCacheDir(String s) Sets the directory to be cleared.

(default
“E:\\apache\\htdocs\\images”)

public String getCacheDir() Retrieves the cache directory
setting

public void setExpiredTimeInMinutes(int min) Sets the minimum age of files to

 32

be deleted (default 10)
public int getExpiredTimeInMinutes() Retrieves the minimum age of

files to be deleted
public void setSleepIntervalInMinutes() Sets the period of time

CacheCleaner should sleep
between removing files. (default
360)

public int getSleepIntervalInMinutes() Retrieves the sleep time.
public void start() Starts the cleaner thread.
public void stop() Stops the cleaner thread.

KavaChart server objects have a common, static variable for your convenience
in storing a running copy of CacheCleaner. Because this variable is static, and is
the same for all instances of KavaChart server objects, you only need to
instantiate a single CacheCleaner. Also, using this variable cleans only a single
cacheDirectory, since new instances of CacheCleaner overwrite existing
instances. You can automatically install a CacheCleaner by setting the
appropriate group of properties. Here’s an example:

<html>
<head><title>Simple Chart Generation</title></head>
<body bgcolor="white">

<%
com.ve.kavachart.servlet.Bean chart =
 new
com.ve.kavachart.servlet.areaApp();
//add some random data here:
for(int i=0;i<5;i++){
 double d = Math.random();
 chart.accumulateProperty("dataset0yValues",
 Double.toString(d));
}
String writeD =

 "/usr/ apache/webpages/chart_images";
//make sure we have a CacheCleaner
chart.setProperty("useCacheCleaner", "true");
chart.setProperty("cacheCleanerDirectory", writeD);
chart.setProperty("cacheCleanerInterval", "60");
chart.setProperty("cacheCleanerExpirationTime", "30");

//set a few properties to make the chart look nice
chart.setProperty("titleString", "hello, world");
chart.setProperty("writeDirectory", writeD");
chart.setProperty("yAxisOptions", "gridOn,

 minTickOn");
chart.setProperty("xAxisOptions", gridOn");
chart.setProperty("plotAreaColor", "lightGray");
chart.setProperty("width", "400");
chart.setProperty("height", "200");
%>
<p>
Here's the chart:

<img src=/chart_images/<%= chart.getFileName() %>>

 33

</body>
</html>

In this example, we set the cacheDir property to the same value as our chart’s
writeDirectory property. We also set the sleep interval to 1 hour, and the
expiration time to 30 minutes.

Every hour, our CacheCleaner will run, removing all files older than 30 minutes
from our cache directory, “webpages/chart_images”.

Notice that we also pre-pended “chart_images” to the filename to make sure
the browser finds it in the correct cache directory.

Property Name Value
String Description

useCacheCleaner true/false Determines whether an instance of CacheCleaner will
be created to clean up the cache directory.

cacheCleanerDirectory String
This sets the cache directory to be regulated by
CacheCleaner. Note that CacheCleaner cannot tell the
difference between chart images and other files so it will
delete any files in this directory over the expiration age.

cacheCleanerInterval integer Determines the sleep interval in minutes for this
instance of the CacheCleaner

cacheCleanerExpirationTime integer Any file in the cache directory over this age in minutes
will be automatically deleted by CacheCleaner

If you want to run CacheCleaner in a separate process, you can set the
properties via arguments:

Argument Effect

-ddirectory Sets the directory to be cleared. (default “E:\\apache\\htdocs\\images”)

-xminutes Sets the minimum age of files to be deleted (default 10 minutes)

-sminutes Sets the period of time CacheCleaner should sleep between removing files.
(default 360)

-v Sets verbose mode

-r Run CacheCleaner one time and exit

For example, the following command would clear images from
“/usr/htdocs/image_cache” older than 10 minutes, and then exit:

java com.ve.kavachart.utility.CacheCleaner –d/usr/htdocs/image_cache –
x10 –r

 34

If you decide not to use CacheCleaner, every operating system has some
facilities to accomplish the same task. For example, on a Unix server, you can
create a cron job that runs a shell script to do the same task. An NT server
might use a scheduled task or a service. If your application is such that you
don’t accumulate many image files, you could even remove the files manually
from time to time.

Tooltips and Hyperlinks
One of the big advantages to using KavaChart’s factory server tools is their
built-in support for tooltip labels and hyperlinks. Tooltip labels are motion-
sensitive labels that appear over a region of chart to provide additional
information. This example shows actual data values as the mouse passes over
individual pie slices:

These labels can show X values, Y values, data labels, or dataset labels. They
can also be formatted with additional text, and show some combination of these
labels.

The most basic mechanism for generating these labels creates a “client side
imagemap”, which describes a set of shapes for hyperlinks. These imagemaps
are frequently used in web applications like maps or graphical menus. By
generating chart images dynamically, KavaChart can also calculate the geometric
values to create a map of shapes dynamically.

An ALT label for each region specifies the labeling for that region. Note: for
browsers that don’t support ALT tags in imagemaps, KavaChart also supports a
translation facility to create JavaScript labels, which is described below.

 35

Note:

If you want to generate tooltip output without writing an image
into the server’s image cache, use a ChartTag, which will generate
the tooltip text while using a cooperative servlet to handle the
image bytes.

Because each region is identified by way of a hyperlink imagemap, you can also
place a hyperlink at each location, along with a “target” frame to specify where
the hyperlink should open. The default link location is “_self”, but you can also
specify any other location with the “target” property.

Here is the HTML output for a chart with tooltip labels:

<MAP NAME=map0>
<AREA SHAPE=POLY COORDS="81, 148, 81, 132, 134, 132, 134,
148" ALT="value: 0.227">
<AREA SHAPE=POLY COORDS="81, 128, 81, 112, 261, 112, 261,
128" ALT="value: 0.757">
<AREA SHAPE=POLY COORDS="81, 108, 81, 92, 106, 92, 106,
108" ALT="value: 0.11">
<AREA SHAPE=POLY COORDS="81, 88, 81, 72, 186, 72, 186, 88"
ALT="value: 0.446">
<AREA SHAPE=POLY COORDS="81, 68, 81, 52, 233, 52, 233, 68"
ALT="value: 0.64">
</MAP>
<img src=03e2c9f00aff12534c4896a0309.jpg BORDER=0 ISMAP
USEMAP=#map0>

The first item is a “MAP” definition, named “map0”. This is our imagemap,
which has a list of shapes, defined in pixel coordinates. Each shape also
contains an “ALT” tag that provides some text for the tooltip label.

The next item is our image, which has been defined with an “ISMAP” attribute.
This identifies the image as having an associated imagemap. The “USEMAP”
attribute identifies which map definition we want to associate with this image.

Note:

Macromedia Flash and Scalable Vector Graphics output includes
tooltips and hyperlink logic within the output stream. No image
map is required.

To build this output stream, KavaChart supplies the image file name and the
map definition. You supply the rest of the HTML, including the IMG attributes
that tell whether the chart is associated with an imagemap, and what that map’s
name is. This JSP scriptlet would create the stream above:

 36

<%
Bean chart = new pieApp();
chart.setProperty("dataset0yValues",
 ".227,.757,.11,.446,.64");
chart.setProperty("writeDirectory", "webpages");
chart.setProperty("toolTips", "true");
chart.setProperty("dwellUseXValue", "false");
chart.setProperty("dwellYString", "value: XX");
chart.setProperty("width", "400");
chart.setProperty("height", "200");
%>
<%= chart.getLinkMap() %>
<img src=/<%= chart.getFileName() %> BORDER=0 ISMAP
USEMAP=#map0>

The KavaChart server object’s “getLinkMap()” method supplies a String that
contains the entire imagemap. We used the default map name, so our IMG
tag’s USEMAP attribute specifies “#map0”. Tooltips are enabled by setting the
“toolTips” property to “true”.

Two other properties manage the appearance of this chart’s tooltips. First, we
set “dwellUseXValue” to “false”. X values don’t have any meaning in a pie
chart, so we disable them. Next, we defined “dwellYString” to be “value: XX”.
The string “XX” is replaced by each pie slice’s Y value. The rest of the property
value is used to describe this number.

This table describes tooltip related properties:

Property Value Description

 toolTips true/false
Tells the chart object whether to calculate a client-side MAP
for tool-tip dwell labels. This map is returned by the
“getLinkMap()” method.

dwellUseDatasetName true/false Tells the chart object whether to use the dataset name in the
popup tooltip labels

dwellUseLabelString true/false Tells the chart object whether to use each data point's label as
a part of the popup tooltip labels.

dwellUseXValue true/false Tells the chart object whether to use each data point's X value
as a part of the popup tooltip labels.

dwellUseYValue true/false Tells the chart object whether to use each data point's Y value
as a part of the popup tooltip labels.

dwellXString String A text string containing the characters "XX" to add descriptive
text to the tooltip label X value. Example: "Category XX"

dwellYString String A text string containing the characters "XX" to add descriptive
text to the tooltip label Y value. Example: "Unit Sales: $XX"

dwellLabelDateFormat String
A text string providing formatting information for time oriented
chart tooltip labels. For example, “MM/yyyy” would display
month numbers, then year, like this: 02/2003

dwellXPercentFormat true/false Determines whether the X label will use a percent format

dwellYPercentFormat true/false Determines whether the Y label will use a percent format

 37

dwellXCurrencyFormat true/false Determines whether the X label will use a localized currency
format

dwellYCurrencyFormat true/false Determines whether the Y label will use a localized currency
format

dwellXLabelPrecision Integer
Number of digits of precision for dwell label values. For
example, if precision is "2", labels will look like this: 123.45 or
123,45.

dwellYLabelPrecision Integer
Number of digits of precision for dwell label values. For
example, if precision is "2", labels will look like this: 123.45 or
123,45.

If you need to generate tooltip labels for browsers that don’t support use of the
“ALT” tag in imagemaps, KavaChart provides a utility class that will translate
the default imagemap into a browser-independent JavaScript.

Tooltip Labels in
JavaScript

For these situations, your image attributes and definition will remain the same.
However, instead of using the chart object’s “getLinkMap()” method directly,
you would us it indirectly, like this:

com.ve.kavachart.utility.ToolTipMaker.translate(chart.getLink
Map());

These tooltips use document styles and layers to create context sensitive labels
that track your mouse movements. If you are creating complex documents that
already have multiple layers, with named spans, you may need to modify this
JavaScript slightly. ToolTipMaker is provided in source code form so you can
make these modifications if they’re required.

KavaChart server objects can also create output streams that contain hyperlinks
to other pages. This is useful if you want to create “drill-down” reports keyed to
individual data items. For example, a pie chart might represent revenues in each
district of a county. Clicking on a slice could take you to another chart that
describes the revenue breakdown for that individual district.

Hyperlinks

Hyperlinks work the same as tooltips, but use some additional properties:

Property Name Value Description

 mapName String
ToolTips and hyperlinks use client side imagemaps to link
strings and URLs to image geometries. These imagemaps
must be named. The default name is "map0". This property
lets you override the map name.

hasLinkMap true/false
Tells the chart object whether to calculate a client-side MAP
for hyperlinks (defined using DatasetNLinks). If this is set to
false, tooltips without hyperlinks will be returned with
getLinkMap().

datasetNLinks List
A list of comma-separated URLs that will be used in a client-
side imagemap as hyperlinks for each Datum (bar, pie slice,
line marker, etc.) in Dataset N.

 38

datasetNTargets List
A list of comma-separated frame targets that will be used in
conjunction with client-side imagemap hyperlinks for Dataset
N. Note that you can also specify JavaScript objects here for
additional user-defined client-side functionality.

The “mapName” property is shared with the tooltip imagemap property set,
since the imagemap is the same. “hasLinkMap” determines whether the
imagemap will contain hyperlink information. “toolTips” determines whether
“ALT” tags will be added for tooltip labeling. If both properties are set to
“true”, then the imagemap will create both tooltips and hyperlinks.

Like tooltips, hyperlink imagemaps require you to add the imagemap to your
output stream. Here’s a sample, based on our previous example:

<%
Bean chart = new pieApp();
chart.setProperty("dataset0yValues",
 ".227,.757,.11,.446,.64");
chart.setProperty("dataset0Links",
 "1.html,2.html,3.html,4.html,5.html");
chart.setProperty("writeDirectory", "webpages");
chart.setProperty("toolTips", "true");
chart.setProperty("useLinkMap", "true");
chart.setProperty("dwellUseXValue", "false");
chart.setProperty("dwellYString", "value: XX");
chart.setProperty("width", "400");
chart.setProperty("height", "200");
%>
<%= chart.getLinkMap() %>
<img src=/<%= chart.getFileName() %> BORDER=0 ISMAP
USEMAP=#map0>

Now our output imagemap will include links to the pages named in the property
“dataset0Links”. These links can include any URL, including URLs from
another server.

Note:

Hyperlinks can also contain javascript references, which permit
charts to manipulate information contained on a web page.

 39

Using ChartServlet
KavaChart’s server objects include a pre-built servlet that’s handy for testing and
setup, and perhaps even for production use. The class file is
“com.ve.kavachart.servlet.ChartServlet”, located in the “kcServlet.jar” file. This
class implements both “doGet” and “doPost” methods, so you can call it in a
variety of ways. Also, this servlet can return either text with hyperlinks and
tooltip labels, or a stream of image bytes. (Note: because of security
considerations, you’ll have to modify ChartServlet.java to return anything but a
memory-created byte stream).

After KavaChart’s Web Application Archive (kavachart.war) hase been installed
on your server you can access ChartServlet like this:

http://localhost:8080/kavachart/servlet/com.ve.kavachart.servlet.ChartServlet?chartType=barApp
&titleString=boo

This URL assumes that your server is running on your local machine at port
8080, and that the servlet path is /servlet. We can set charting properties by
sending them as parameters to ChartServlet. In this example, we’re telling
ChartServlet that we want to use the “barApp” object, and that we want the title
to be “boo”.

The “byteStream” property is set to “true” by default. The “useCache”
property is set to “false” by default. This ensures that the servlet will generate
an image in memory without writing it to a server cache. Since we're not
defining the imageType, it will default to JPEG. We haven't defined any data or
chartType, so the bean will use sample data in a default bar chart.

Note:

The “byteStream” and “useCache” properties cannot be changed
for ChartServlet without recompiling the ChartServlet source
code. Similarly, the “fileName” and “writeDirectory” properties
cannot be altered without recompiling this file. You should
carefully consider how these properties might be used on your
server before making any changes to prevent malicious users from
overwriting system files or filling your cache directories with
unwanted image files.

A URL pointing to a ChartServlet in this manner will reach the “doGet”
method to retrieve charting information. You can also use ChartServlet within
an IMG tag like this:

<IMG

 41

SRC=”http://localhost:8080/kavachart/servlet/com.ve.kavachart.serv
let.ChartServlet?… >

Unfortunately, a realistic chart definition will quickly become so large as to make
URLs like this unreasonable. You may find POST operations a better option
with ChartServlet.

Some servers also implement “server-side-includes” that let you use an applet-
like definition, similar to this:

<servlet code=com.ve.kavachart.servlet.ChartServlet>
<param name=chartType value=barApp>
<param name=width value=300>
<param name=height value=200>
<param name="dataset0yValues" value=321, 234, 234, 456>
<param name="xAxisLabels" value="apples, oranges, peaches, pears">
</servlet>

A server-side include will replace the ChartServlet definition above with a simple
IMG tag:

You should notice that the ChartServlet definition above is nearly identical to
the parallel applet definition:

<applet code=com.ve.kavachart.applet.barApp width=300 height=200>
<param name="dataset0yValues" value="321, 234, 234, 456>
<param name="xAxisLabels" value="apples, oranges, peaches, pears">
</applet>

Since KavaChart server objects use the same parameter handling code as
KavaChart applets, it’s easy to switch between the two technologies.

To integrate ChartServlet into your own application, you must modify your
“web.xml” specification to add the servlet into your application context.

ChartServlet has some special properties that aren’t used by the server chart
objects. Other properties are disabled for ChartServlet because of security
issues. These are described in the table below:

ChartServlet
Properties

Property value
type

Effect

chartType String

the kind of chart you want to generate. These are all the "App" files in
the servlet package, such as "barApp", "lineApp", and so on. The default
chart type is a horizontal bar chart. If you want to reference a chart that's
not in the com.ve.kavachart.servlet package, it must be a subclass of
com.ve.kavachart.servlet.Bean, and you must provide the fully qualified
name (e.g.
"chartType=com.ve.kavachart.contrib.TwinAxisDateLineServlet").

 42

writeDirectory String This property is disabled in ChartServlet for security reasons.
readDirectory String This property is disabled in ChartServlet for security reasons.

useCache boolean This property is disabled in ChartServlet for security reasons.
ChartServlet always has a useCache value of “false”.

byteStream boolean This property is disabled in ChartServlet for security
reasons. ChartServlet always uses a value of “true” for “byteStream”

fileName String This property is disabled in ChartServlet for security reasons.

Until you modify ChartServlet and recompile it, this class will only generate
images in memory, and retrieve byte streams. This prevents the class from
writing any server files, and potentially overwriting important files or exceeding
a disk quota via malicious usage.

 43

Chapter

5
KavaChart Server
Objects: Methods and
Properties
This chapter discusses the methods available in KavaChart server objects,
their organization, and their properties.

KavaChart server objects are located in the Java package
“com.ve.kavachart.servlet”. These objects are designed to be single-use image
generators; you will create an instance of an imaging object, define your chart
properties and data, and request an image. The server object will provide the
requested image data, and will then be disposed and made available for garbage
collection.

What defines a chart image? Every chart image starts out as some chart type,
with a set of default values. For example, if you want to create a bar chart, you
would start with the KavaChart server object that creates bar charts
(com.ve.kavachart.servlet.barApp), which has a default white background, blue
bars, and black axes and text.

You would refine this chart by calling the object’s “setProperty” method, to
attach values to named properties. For example:

Object.setProperty(“titleString”, “My Chart”);

Or, in a chart tag, your “style” properties file would contain this line:

titleString=My Chart

This will change the default title (which is no title at all) to “My Chart”.
Properties are available to modify virtually any aspect of a chart. For example,
you can change the background color, assign an image to be used for drawing
the bars, set a 3d effect, make a legend visible, change the size and position of
the title, add labels to the tops of each bar, and so on.

 45

You can also use properties to define your chart’s data. Most charts can take up
to 40 series of data. Different kinds of charts use different data values. Our
example, a bar chart, uses only Y values. Other charts use X, Y, Y2, Y3, and Y4
values. Data can also be set without using properties, as is discussed below.

Other properties don’t affect the look of the chart, but rather they define how
the charting object will operate. For example, one property determines what
image format will be used for creating output. Another set of properties
determines whether the charting object should write the image to a file or simply
hold it in memory.

When all the chart properties and data have been defined, the chart object
generates image data when one of three methods is called: “getImageBytes()”,
“getFileName()”, or “getLinkMap()”. These methods trigger the bulk of the
work performed by the chart object:

 The properties are examined and a filename is calculated that identifies
this unique chart.

 The chart object checks the server’s cache directory (set with the
“writeDirectory” property) to see if the file has been previously created.

 If no previous image with this name exist, an internal chart is created.
Note: if the file already exists, this is returned immediately to a call to
“getFileName()”, or the file is read to obtain the bytes requested from a
call to “getImageBytes()”.

 An internal chart is created, based on the type of server object we’re
using. In our example, a “BarChart” would be created.

 The properties are examined and the internal chart is modified
accordingly.

 An image is created in memory and the internal chart is drawn to the
image.

 Pixels are then extracted from this image, and the pixel data is passed
through an image encoder for the requested “imageType” property
(default is JPEG).

 Finally, the image bytes are either returned directly, or they are written
to the caculated filename, and the filename is returned to the
“getFileName()” call.

This process happens naturally at the appropriate time when using the chart tag
library.

 46

Server Object Methods
Generally, you can create a chart by creating an object instance, calling
“setProperty” repeatedly to set up the chart attributes, and then calling
“getFileName()” or “getImageBytes()”. Since the vast majority of chart object
attributes are set by using property pairs, you will only use a few public methods
with them. The public methods are listed below.

Method Effect

Constructor(java.util.Properties)
Constructor()

any bean subclass can be instantiated with a
java.util.Properties to provide predefined charting
properties. The available property names are listed
later in the chapter.

public void generate()
Generates an image file or ByteArray based on the
current property settings. This is called automatically
by getFileName() and getImageBytes().

public String getFileName()
Retrieves the user specified fileName or the default file
name. If the image for this chart has not yet been
generated, calls generate().

public byte[] getImageBytes()
Retrieves this image as an array of bytes. Generates
the image if required. Retrieves the bytes from image
cache if available.

public String getParameter(String) Retrieves a property, or parameter, if set.
public Enumeration getParameterNames() Retrieves the current list of set properties.
public String getProperty(String) see getParameter(String).

public void setProperty(String, String)
Sets a specified property to a specified value. Consult
the list of servlet properties, general properties, and
chart-specific properties for more information.

public void setProperty(String, boolean)
Sets a property to a specified value. The functionality
of this method is the same as setting a property with
“true” or “false” as a string value.

public void setProperty(String, int)
Sets a property to a specified value. The functionality
of this method is the same as setting a property with a
string representation of an integer value.

public void setProperty(String, double)
Sets a property to a specified value. The functionality
of this method is the same as setting a property with a
string representation of a double value.

public void setProperty(String, double[])
Sets a property to a specified value. The functionality
of this method is the same as setting a property with a
string representation of a list of double values.

public void accumulateProperty(String,
String)

Some properties take the form "a,b,c,d". For example,
the property "dataset0yValues" might look like this:
"432,123,432". In a servlet, ASP or JSP, it's often
easier to accumulate these properties in a loop that
examines a resultset from a database lookup. To
create the list for dataset0yValues, you'd call this
method three times:
accumulateProperty("dataset0yValues", "432"),
accumulateProperty("dataset0yValues", "123"), and so
on. Note: it’s even better to create a portable
DataProvider implementation in most cases.

public String getLinkMap() Retrieves HTML statements for a client-side
imagemap that contains tool tip information for each

 47

Datum (based on the dwellLabel properties below) and
a set of hyperlinks (based on the datasetNLinks and
datasetNTargets properties below). This string
contains the geometries for each data item on the
chart (pie slice, bar, line vertex, etc.) and may be quite
long for complex charts.

public void loadProperties(String)
Loads properties from a specified include file. This text
file contains a single column of entries with the form
"propertyName=value".

public ChartInterface getChart()

Retrieves the internal com.ve.kavachart.chart.Chart
object from the charting object for direct customization
in java code. Note: this should be called only after all
properties have been set. See the sections below that
discuss how to add data directly without accessing the
internal chart.

public void setDataProvider(DataProvider
dp)

Installs a DataProvider class to supply this chart with
data.

public Dataset getDataset(ChartInterface c,
int index)

Method for you to override to provide one data series
in com.ve.kavachart.chart.Dataset form. Deprecated

public void
setUserImagingCodec(UserImagingCodec
codec)

Adds a custom class to be used by Bean to produce
the output file or bytestream. This can be used to
encode charts to PostScript, transparent GIF or other
formats not supported by CacheManager. Any custom
class should extend
com.ve.kavachart.servlet.UserImagingCodec and
override either the public byte[]
drawChartToOutputStream(ChartInterface), or public
byte[] encodeImageBytes(Image) methods. Two such
sample classes can be found in the contrib package,
they are com.ve.kavachart.contrib.PostScriptEncoder,
and com.ve.kavachart.contrib.GifEncoderForKava.

Image Management Properties
The following table describes the built-in image management properties
associated with KavaChart server beans. See Chapter 5, “KavaChart on a
Server” for more information about how these properties affect the image
cache. Set these properties by calling the “setProperty” method.

Property value
type

effect

imageType String

Output image type. This defaults to PNG generation.
Other supported imageTypes include: “flash” or “swf”,
which produces Macromedia Flash output, “svg”, which
produces Scalable Vector Graphics, "gifmaker"
(KavaChart's sample GIF generator), j_jpeg (a java jpeg
generator), j_png (a java PNG generator,
recommended), j_bmp (a java .BMP file generator), j_ico
(a java based .ICO file generator), j_xbm (a java based
X-bitmap generator), j_xpm (a java based X-pixmap
generator). Note: if you’re using a Java version lower
than 1.2 (Microsoft’s JVM, for example), use j_png or
j_jpeg.

properties string
a properties file containing default chart parameters.
This is a great way to set up a customized look for your
chart without constantly passing the same parameters to

 48

the server chart object. Note: you can also simply pass
the Properties as a part of the chart constructor.

height integer pixel height of generated image
width integer pixel width of generated image

writeDirectory String

KavaChart writes image files into this directory. By
default this is set to "public_html/images". This usually
means the server will attempt to write images into
$SERVER_ROOT/public_html/images/file_name. You
can also specify an absolute path, such as
/usr/lib/webserver/images for this directory. The write
directory must be writable by the servlet engine, and
readable by the web server. In a servlet, you can use
getServletContext().getRealPath(string), and in a JSP,
you can use application.getRealPath(string) to obtain the
actual filesystem location. NOTE: this property is
currently disabled in ChartServlet for security reasons.

debug String
If “ChartServlet” finds the parameter "debug" it will log
messages to the server log about files names, locations,
sizes, etc. If one of the charting objects receives this
property, it will print the output to standard out. The
value of this parameter is ignored.

useCache boolean

If "true", the chart objects will attempt to use an image in
the cache directory matching this set of property
definitions. If "false" the image will be generated each
time. Note: if you’re using the “DataProvider” interface to
supply data, you implement the “getUniqueIdentifier”
method to create an identifier string for your data. An
identifier string (a checksum, for example) will ensure
that the image is regenerated when for each unique set
of data. Image caching is enabled by default. If
useCache is false and byteStream is true, the bean
won't write any output to the server's disk. NOTE: this
property is currently disabled in ChartServlet for security
reasons. Without recompilation, ChartServlet will not
write files to your server.

byteStream boolean

By default ChartServlet writes an image to disk, and
then sends a message to the response
OutputStream. If byteStream is set to "true", however,
the servlet will instead set the content-type to the
appropriate image type and send a stream of bytes.
Note, however, that servlet parameters must still be set
to generate a meaningful chart. By combining
useCache=false and byteStream=true for server chart
objects you can avoid using the server's disk entirely.
NOTE: this property is currently disabled in ChartServlet
for security reasons.

fileName String

An image file name for this chart object. By default, the
objects use a Secure Hash Algorithm (SHA) to create a
digest of all the parameters in a given chart definition.
This digest is used to create a filename that uniquely
identifies a chart defined by a given set of parameters.
The object’s CacheManager looks for the unique SHA-
derived filename in the image cache, and sends that
image without regenerating it, if the image exists. Any
change in the parameters, even the addition of an
unused parameter, will create a new file name, and will
cause the image to be regenerated. You can override
the default image name with this parameter to force the
image to be a specified name NOTE: this property is
currently disabled in ChartServlet for security reasons.
ChartServlet must be recompiled before it can write files
to your server.

 49

antialiasOn true/false Turns antialiasing on for the resulting chart image.

useCacheCleaner true/false
Determines whether an instance of CacheCleaner will
be created to clean up the cache directory.
CacheCleaner is discussed in more detail below.

cacheCleanerDirectory String
This sets the cache directory to be regulated by
CacheCleaner. Note that CacheCleaner cannot tell the
difference between chart images and other files so it will
delete any files in this directory over the expiration age.
CacheCleaner is discussed in more detail below.

cacheCleanerInterval integer
Determines the sleep interval in minutes for this instance
of the CacheCleaner. CacheCleaner is discussed in
more detail below.

cacheCleanerExpirationTime integer
Any file in the cache directory over this age in minutes
will be automatically deleted by CacheCleaner.
CacheCleaner is discussed in more detail below.

Tooltip and Hyperlink Properties
These properties manage the information returned in a chart object’s
“getLinkMap()” method. See Chapter 5, “KavaChart on a Server” for more
information on how to use hyperlinks and tooltips.

Property Value
type Effect

mapName String
ToolTips and hyperlinks use client side imagemaps to link
strings and URLs to image geometries. These imagemaps
must be named. The default name is "map0". This property
lets you override the map name. Not used for SWF or SVG
output.

toolTips true/false Tells the object whether the client-side MAP should include
ALT tags for tool-tip dwell labels.

hasLinkMap true/false Tells the object whether the client-side MAP should contain
hyperlinks (set using DatasetNLinks).

dwellUseDatasetName true/false Tells the servlet whether to use the dataset name in the
popup dwell labels

dwellUseLabelString true/false Tells the servlet whether to use each datapoint's label as a
part of the popup dwell labels.

dwellUseXValue true/false Tells the servlet whether to use each datapoint's X value as
a part of the popup dwell labels.

dwellUseYValue true/false Tells the servlet whether to use each datapoint's Y value as
a part of the popup dwell labels.

dwellXString String
A text string containing the characters "XX" to add
descriptive text to the dwell label X value. Example:
"Category XX"

dwellYString String A text string containing the characters "XX" to add
descriptive text to the dwell label Y value Example: "Unit

 50

Sales: $XX"
dwellXPercentFormat true/false Determines whether the X label will use a percent format

dwellYPercentFormat true/false Determines whether the Y label will use a percent format

dwellXCurrencyFormat true/false Determines whether the X label will use a localized currency
format

dwellYCurrencyFormat true/false Determines whether the Y label will use a localized currency
format

dwellXLabelPrecision Integer
Number of digits of precision for dwell label values. For
example, if precision is "2", labels will look like this: 123.45
or 123,45.

dwellYLabelPrecision Integer Number of digits of precision for dwell label values. For
example, if precision is "2", labels will look like this: 123.45

Data Related Properties
Every chart creates a graphical representation of numeric information.
Different kinds of charts require different kinds of numeric information, but
every chart requires at least some sort of numbers to start with. KavaChart
organizes this information into "Datasets", which contain the numbers and text
required by your chart.

Some charts have a single dataset (pie charts and speedos), while others may
have many datasets (each line on a line chart is a different dataset). Similarly,
some datasets contain a lot of information for each observation (a candlestick
chart has a time, high, low, open, close, and label value for each price bar), while
others contain only a little (a speedo uses only a single value, and a pie uses one
value and one label for each slice).

Following mathematical conventions, the most basic numeric unit for each
observation in a chart is called a "Y" value. This means that we use "Y" values
to define the value for each slice in a pie, or the height of each column, or even
the width of a bar in a horizontal bar chart. Y values are required for any chart
to create a meaningful visual.

Every chart can also contain a textual label for each Y value. These charts don't
always display that label, but it's available. For example, you might assign some
labels like "East", "West", "North", and "South" to a bar chart. The labels
might not be visible on the chart, but you could use them in a tooltip label for
users that want to explore further.

Some charts also use "X" values, which is generally thought of as the
"independent", or deterministic part of your observation. For example, if your
chart shows how ozone levels compare to temperature, you would assume that
temperatures are "independent" of ozone levels, while ozone levels may be
"dependent" on temperatures. Temperature would be used as "X" values in this

 51

case. A line chart that plots ozone levels against temperature might have a
variety of temperature observations that don't fall into neatly defined categories,
but for each temperature observed (X), there would also be an ozone level
observation (Y).

Not all charts use X values. In some cases (pie charts) this is obvious. In other
cases, it may not be. For example, bar charts don't usually use X values, because
bars are generally used to represent categories, rather than a set of independent
numeric values. In the case of a bar or column chart, KavaChart will ignore
your X values, and use a set of implied X values (0, 1, 2, ...).

More complex charts, such as hi-lo bar charts or financial charts (OHLC,
Candlestick) require additional information, which we call "Y2" and "Y3" data.
This auxiliary information takes on special meaning depending on the chart that
calls for it.

All this X, Y, Y2, and Y3 data is organized into datasets. Every chart can
contain up to 40 datasets, with an unlimited number of observations in each
dataset. Some charts (speedo and pie, for example) don't use all the data; these
charts use the lowest numbered information available. For example, pie charts
use dataset 0, and speedos use only observation 0 of dataset 0.

In addition to the numbers and text, each observation can also take a fill color
definition, a line color, and a fill style and line style. The dataset that contains
the observations also has fill, line, and color information, and a name for the
overall dataset. Different charts use all this information in different ways.

For example, a pie chart uses the color definitions for each observation to draw
each slice, and individually colored bar charts use this information for each bar's
color and for legend icons. Standard bar charts and line charts use the dataset
colors and labels for drawing and legends.

How do you get all this information into your server object? A quick way is to
just use chart properties to add data. Here's an example of JSP with a simple
data definition:

Supplying Data
with Properties

<%
com.ve.kavachart.servlet.Bean chart =
 new
com.ve.kavachart.servlet.columnApp();
//add some data here:
chart.setProperty("dataset0yValues", "234,321,234"); %>
<p>
Here's the chart:

<img src=/<%= chart.getFileName() %>>

This JSP uses the property “dataset0yValues” to define the "Y" values for
dataset 0. To add another series, we'd just add another property, using

 52

“dataset1yValues”. To add another bar to our chart, we'd just add another
number to the list "234,321,234".

In this chart we don't need X values, Y2 values or anything else, because we're
just dealing with a simple bar chart. If we wanted to add some labels, we could
do this:

<%
com.ve.kavachart.servlet.Bean chart =
 new
com.ve.kavachart.servlet.columnApp();
//add some data here:
chart.setProperty("dataset0Labels", "a,b,c");
chart.setProperty("dataset0yValues", "234,321,234"); %>
<p>
Here's the chart:

<img src=/<%= chart.getFileName() %>>

It doesn't matter what order the properties are in. These labels can be used in
various ways. For example, right now, the chart will use these labels along the
horizontal axis to label each bar. However, if we add the property "labelsOn"
and set the value to "true", we'll get labels at the top of each bar. The same
properties can be used for pie charts, line charts, or any other kind of chart. We
would just assign a pieApp, areaApp, or some other kind of chart to our “chart”
variable.

Properties are available for dataset0yValues, dataset0xValues, dataset0y2Values,
dataset0y3Values, and dataset0Labels for datasets 0 through 39.

Since your data is probably coming from some kind of object you can iterate
(e.g. a resultset, an array, a Vector, etc.), you might want to use
“accumulateProperty” instead of “setProperty”, like this:

for(int i=0;i<myVector.size();i++){
 String val = myVector.elementAt(i).toString();

chart.accumulateProperty("dataset0yValues", val);
}

Most applications will benefit by implementing a “DataProvider” class to supply
data directly to charts. This requires a small bit of Java coding, but it’s generally
well worth the effort to get the portability and organization provided by a
DataProvider. DataProviders are discussed below.

The table below gives parameter names and usage descriptions. All parameters
listed as “dataset0” are valid for datasets 0 through 39. Items described as “lists”
expect a comma separated list of values, colors, etc. You can change the
delimiter from a comma to another character with the “delimiter” param.

Dataset Properties

 53

Property
Name

Type Effect

dataset0xValues list comma separated list of X values for dataset 0.

dataset0yValues list comma separated list of Y values for dataset 0

dataset0y2Values list comma separated list of difference values for dataset 0 hilo bars

dataset0xyValues List comma separated list of X,Y values for dataset 0.

dataset0dateValues List Comma separated list of time/date strings for dataset 0. See also
“inputDateFormat”.

dataset0y3Values list Tertiary observations for charts that require 3 Y values (e.g. hi-lo-close
charts)

One special case deserves notice here. Some charts support the notion of
"discontinuities" (disLineApp, disDateLineApp, etc.). In these charts, you want
to have a break in the line or some other visual feedback that shows missing
data. In this case, you can just use some non-number, like 'x', to indicate a
break. KavaChart recognizes this as a missing point and creates the line break
as appropriate. Here's an example:

Discontinuities

<%
com.ve.kavachart.servlet.Bean chart =
 new
com.ve.kavachart.servlet.disLineApp();
//add some data here:
chart.setProperty("dataset0yValues",
 "2,3,6,x,4,5,2,x,7,8"); %>
<p>
Here's the chart:

<img src=/<%= chart.getFileName() %>>

Charts that display time oriented data (dateLineApp, dateAreaApp, etc.) use
time stamps as a special kind of numeric value. For these charts, use the
property dataset0dateValues, like this:

Time oriented
charts

chart = new com.ve.kavachart.applet.dateLineApp();
chart.setProperty("width", "300");
chart.setProperty("height", "200");
chart.setProperty("dataset0yValues", "234,321,234");
chart.setProperty("dataset0dateValues",
 "01/01/02,02/01/02,03/01/02");

This property translates the dates into a form usable by Java classes and places
our Y observations at the proper locations along the axis. Unfortunately, our

 54

date definitions are ambiguous here. Did our observations occur on January 1,
2, and 3? Or did they occur on January 1, February 1, and March 1?

To properly use dataset0dateValues, you should also use inputDateFormat: Managing Date
Formats

chart = new com.ve.kavachart.applet.dateLineApp();
chart.setProperty("width", "300");
chart.setProperty("height", "200");
chart.setProperty("inputDateFormat", " MM/dd/yy");
chart.setProperty("dataset0yValues", "234,321,234");
chart.setProperty("dataset0dateValues",
 "01/01/02,02/01/02,03/01/02");

The table below describes how to construct an inputDateFormat to match your
data generator.

Field Full Form Short Form

Year yyyy (4 digits) yy (2 digits)
Month MMM (name) MM (2 digits), M (1 or 2 digits)
Day of week EEEE EE
Day of Month dd (2 digits) d (1 or 2 digits)
Hour (1-12) hh (2 digits) h (1 or 2 digits)
Hour (0-23) HH (2 digits) H (1 or 2 digits)
Hour (0-11) kk (2 digits) k (1 or 2 digits)
Hour (1-24) KK (2 digits) K (1 or 2 digits)
Minute mm None
Second ss None
Millisecond SSS None
AM/PM a None
Time Zone zzzz zz
Day of Week in Month F (e.g. 2nd Tuesday) None
Day in year DDD (3 digits) D (1, 2, or 3 digits)
Era G (e.g. BC or AD) None

Tip:

If you're generating dynamic data from a JSP that uses JDBC, you
can probably use the property dataset0xValues. Assuming your
observation dates are java.sql.Date classes, just use the "getTime()"
method to pass the raw numeric information into the chart instead
of formatting the output to match a string input format.

 55

Time and date oriented charts have special properties for managing axes, which
are listed below.

Using DataProviders
A DataProvider is a Java class that implements the KavaChart Interface
"com.ve.kavachart.utility.DataProvider". By implementing this simple interface
in your existing data sources, you can easily translate text and numeric
information into graphics.

The Interface:

public Interface com.ve.kavachart.utility.DataProvider {
 /*
 ** Returns an Enumeration of Dataset classes.
 */
 public Enumeration getDatasets();
 /*
 ** Returns a String that uniquely identifies this data.
 ** Needed to make chart image caching work properly.

 ** Otherwise unnecessary.
 */
 public String getUniqueIdentifier();
}

You probably already have some kind of data connection that provides you with
data for a table, some summary figures, etc. It's a good idea to use the same
connection to implement DataProvider so you don't have to make multiple
database connections, or use up otherwise scarce server resources.

DataProviders are portable, usable in Chart Tags, scriptlets, and servlets. They
can also be used to model you data directly in the KavaChart Wizard, and they
provide the valuable architectural function of separating your data source
management from the visual presentation of that data.

Since a DataProvider returns an Enumeration of Dataset classes, it’s important
to be able to construct these. Fortunately, this class has a range of convenience
constructors that make it quite easy to use.

Important Dataset
Constructors and
Methods

The Dataset class is found in the com.ve.kavachart.chart package. In the
constructors below, set “Globals” to “null”.

public Dataset();

public Dataset(String name,

double[] xArray,
double[] yArray,

 56

double[] y2Array,
double[] y3Array,
int seriesNumber,
Globals g);

public Dataset(String name,
 double[] xArray,
 double[] yArray,
 String[] labels,
 Int seriesNumber,
 Globals g);

public Dataset(String name,

double[] xArray,
double[] yArray,
Globals g);

public Dataset(String name,
 double yArray[],
 int setNumber,
 Globals g);

If you’re using time oriented charts, time values should be the underlying values
(milliseconds since epoch) used by java.util.Date and java.sql.Date. Generally,
these are “X” values, and can be obtained by using Date.getTime().

Dataset also has a number of useful methods that make it easy to create
meaningful data:

public void addDatum(Datum d);

public void addPoint(double x, double y, String label);

A Datum class describes an individual observation: a point on a line, a bar in a
bar chart, etc. Datum is also found in the com.ve.kavachart.chart package, and
has easy to use constructors and methods:

public Datum(double x, double y, Globals g);

public Datum(int whichPoint,

double y,
String label,
Globals g);

public Datum(double dataX,
 double dataY,
 double dataZ,
 String str,
 int element,
 Globals g);

Datum methods let you set internal values:

public void setX(double x);
public void setY(double y);

 57

public void setY2(double y2);
public void setY3(double y3);
public void setLabel(String s);

A complete DataProvider is installed in a chart bean using the
“setDataProvider” method. In a chart tag, a DataProvider is installed into a
server attribute (application, page, or session scope), and the attribute name is
passed into the tag as the “dataProviderID”.

Here’s a simple, complete DataProvider:

import java.util.*;
import com.ve.kavachart.chart.*;
public void MyDataProvider implements DataProvider{
 public Enumeration getDatasets(){
 Dataset d = new Dataset();
 double yVals = new double[20];
 for(int i=0;i<yVals.length;i++){
 d.addPoint(i, y, null);
 }
 d.setName(“Fake Data!”);
 ArrayList al = new ArrayList();
 al.add(d);
 return Collections.enumeration(al);
 }
 public String getUniqueIdentifier(){
 return (new Date()).toString();
 }
}

Note that this code returns the value of “Date” to make sure any cached
versions of this chart are not used. Now, to install and use this DataProvider in
a JSP scriptlet or a servlet, we’d do this:

Bean chart = new columnApp(myStyleProperties);
chart.setDataProvider(new MyDataProvider());
String filename = chart.getFileName();

In a chart tag, we would do something like this:

<%pageContext.setAttribute(“data”, new MyDataProvider());%>
<chart:streamed chartType=columnApp dataProviderID=”data” />

A DataProvider gives you much more flexibility in structuring your pages and
maintaining your data. Importantly, it also helps you test your data inputs
outside an HTTP context.

Within a chart tag, DataProviders can also be filtered, sorted, combined with
other sources, etc. using an intuitive set of tags, discussed in another chapter.

One important chart property interacts with your DataProvider:

 58

Parameter Value Type Example

stylesFromDataProvider boolean chart.setProperty(“stylesFromDataProvider”,true);

stylesFromDataProvider=true

Using this property, it’s possible to programmatically change your data’s style
properties (colors, outlining, etc.) based on your incoming data values. By
default, style information is not based on the DataProvider, but based on chart
properties.

Color and Style Properties
KavaChart server charts support a lengthy list of properties to help you make
your charts look exactly the way you want. These properties are used to set
colors, fonts, textures, line styles, and the overall layout of your chart.

Color and style propertes take different kinds of values. The table below gives
you some examples of what these values should be. Note that all values are set
using a String representation, so a Boolean would “true” or “false”, not a
java.lang.Boolean. Also, all properties are case sensitive for server-side objects.
Some applet environments are more lenient about case usage.

Parameter
Type

Explanation Example

Integer An integer value, like
“1”, or “7”. This is
usually used to
specify something like
a line style or a
marker style; one out
of a list of several
available types.

Chart.setProperty(“legendTexture”,”1”);

legendTexture=1

Double A real number value,
like 0.25. Generally,
these values are
expressed in terms of
a percentage of the
overall chart size.

Chart.setProperty(”plotAreaBottom”,”0.12”);

plotAreaBottom=0.12

Font font parameters
include information for
the font name, the
font size, and the font
style. Any valid Java
font works here, but
we start with a default
of TimesRoman 12pt
in most cases to
ensure that the font is
available. The
example instructs
KavaChart to use 18
point Arial italic fonts
for this chart's X axis
labels. 0 is plain, 1

Chart.setProperty(”xAxisLabelFont”,”Arial,18,2”);

 59

bold, and 2 italic.

Color this field expects a
color name, or a
hexadecimal color
definition (in RGB).
Valid colors names in
these applets include
black, white, gray,
darkGray, lightGray,
red, pink, orange,
yellow, green,
magenta, cyan, and
blue. A valid hex
definition for white is
"ffffff". You can also
use the color
"transparent" if you
don't want a particular
element to be visible.

Chart.setProperty(”titleColor”,”ffbb00”);

List These fields are
looking for a list of
items, separated by a
delimiter. The default
delimiter is a comma
character, but you can
change this with the
“delimiter” param.

Chart.setProperty(“dataset0Colors”,”green,red,ff00aa”>

String A text string Chart.setProperty(“titleString”, ”hello, world”);

url These fields expect
some URL
specification within
your applet’s
CODEBASE.
Relative or absolute
URLs are OK.

Chart.setProperty(”backgroundImage”,”/tmp/pic.jpg”);

Boolean Either “true” or “false” Chart.setProperty(”outlineLegend”,”false”);

Anything Some parameters
can take any value.
The applet just wants
to know if the
parameter has been
defined

Chart.setProperty(“3D”,”yeah, sure”);

The first properties apply to all charts. These properties define colors, overall
layout, titles, and so on.

General Color and
Font Properties

Parameter Value Type Effect

colorPalette String

Set the overall default color palette for the chart.
Default possibilities:
 web_sanfrancisco,
 web_minnesota,
 web_alaska,
 web_newyork,
 web_losangeles,
 web_grays,

 60

 web_seattle,
 web_newmexico,
 web_rosemary,
 web_pastel,
 web_prague,
 presentation_cool,
 presentation_browns,
 presentation_southwest,
 presentation_impact,
 presentation_deep,
 presentation_oceana,
 presentation_sophisticated

The default is “web_newyork”

colorPaletteDefinition list List of color definitions (e.g. 00ff00,green,blue,black)

titleString String Chart Title (default none)

titleFont font Font name, size, & style for chart title (default
TimesRoman, plain, 12 pt)

titleColor color color of text in Title (default black)

titleX double X location of the title string, if this is not specified the
title will be centered.

titleY double Y location of the title string.
subTitleString String Chart Sub-Title (default none)

subTitleFont font Font name, size, & style for chart title (default
TimesRoman, plain, 12 pt)

subTitleColor color color of text in Title (default black)

subTitleX double X location of the subtitle string, if this is not specified
the subtitle will be centered.

subTitleY double Y location of the subtitle string.

labelsOn anything determines whether bar, line, pie, etc., labels will be
visible

labelAngle integer the number of degrees to rotate datum labels
labelPrecision integer the number of digits of precision for datum labels
legendOn anything make the legend visible
legendOff anything make the legend invisible (default)
legendColor color sets the background color of a legend
legendVertical anything legend icons in vertical list (default)
legendHorizontal anything legend icons in horizontal list

legendLabelFont font Font name, size, & style for legend (default
TimesRoman, plain, 12 pt)

legendLabelColor color color of text in legend (default black)
legendllX double X location of lower left legend corner (default 0.2)
legendllY double Y location of lower left legend corner (default 0.2)
iconWidth double width of legend icon (default 0.07)
iconHeight double height of legend icon (default 0.05)
iconGap double gap between icon and next legend entry (default 0.01)

 61

legendSecondaryColor color The Color to be used as the secondary color for this
legends texture/gradient.

legendGradient integer
Sets the gradient for this legend. Available gradient
values are 0 for left/right mirrored, 1 for top/bottom
mirrored, 2 for top to bottom, and 3 for left to right

legendTexture integer
Sets the texture for this legend. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal up
stripes, 4 for cross hashing, and -1 to use the
legendimage to create the texture.

legendImage URL (or filename)
image to use for this legend's background (default
none). Use this property to define line markers for
scatter plots.

legendLineWidth integer pixel width of legend outline

legendLineStyle integer
Sets the line style for this legend's outline. Available
values for this parameter are 0 for dashed, 1 for
dotted, 2 for dot-dashed, and -1 for solid (default = -1).

plotAreaTop double top of the plotting area
plotAreaBottom double bottom of the plotting area
plotAreaRight double right side of the plotting area
plotAreaLeft double left side of the plotting area
plotAreaColor color color of plotting area background (default white)

plotAreaSecondaryColor color The Color to be used as the secondary color for this
plotarea's texture/gradient.

plotAreaGradient integer
Sets the gradient for this plotarea. Available gradient
values are 0 for left/right mirrored, 1 for top/bottom
mirrored, 2 for top to bottom, and 3 for left to right

plotAreaTexture integer
Sets the texture for this plotarea. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal up
stripes, 4 for cross hashing, and -1 to use the plotarea
image to create the texture.

plotAreaImage URL (or filename)
image to use for this plotarea's background (default
none). Use this property to define line markers for
scatter plots.

plotAreaLineWidth integer pixel width of plotarea outline

plotAreaLineStyle integer
Sets the line style for this plotarea's outline. Available
values for this parameter are 0 for dashed, 1 for
dotted, 2 for dot-dashed, and -1 for solid (default = -1).

backgroundColor color color of chart background (default white)

backgroundSecondaryColor color The Color to be used as the secondary color for this
background's texture/gradient.

backgroundGradient integer
Sets the gradient for this background. Available
gradient values are 0 for left/right mirrored, 1 for
top/bottom mirrored, 2 for top to bottom, and 3 for left
to right

backgroundTexture integer
Sets the texture for this background. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal up
stripes, 4 for cross hashing, and -1 to use the plotarea
image to create the texture.

 62

backgroundImage URL (or filename) image to use for this background's background
(default none).

backgroundLineWidth integer pixel width of background outline

backgroundLineStyle integer
Sets the line style for this background's outline.
Available values for this parameter are 0 for dashed, 1
for dotted, 2 for dot-dashed, and -1 for solid (default =
-1).

3D anything turns on 3D effects for this chart (default 2D)
2D anything turns on 2D effects for this chart (default 2D)

XDepth integer number of pixels of offset in X direction for 3D effect
(default 15)

YDepth integer number of pixels of offset in y direction for 3D effect
(default 15)

locale String

KavaChart automatically localizes your charts for the
locale of the Java Virtual Machine that creates the
chart. Generally, locale changes are disallowed by
servlet SecurityManagers. Valid locales include
canada, canada_french, china, chinese, english,
france, french, german, germany, italian, italy, japan,
japanese, korea, korean, prc, simplified_chinese,
taiwan, traditional_chinese, uk, and us. You can also
create a locale using two letter language codes and
country codes in this format:
langageCode_countryCode (for example "en_US"
denotes english/U.S.).

delimiter String the separator character for list parameters. Default is
comma (e.g. "123.432.123").

defaultFont Font

A new default font for your charts. This parameter
overrides the default font setting for KavaChart
graphs. This parameter sets a new default for all
KavaChart graphics running within the Java Virtual
Machine in the current session, so you should use it
cautiously. Its primary value is for settings that wish to
start with consistent font usage for all charts.

outlineColor Color
Color to use for outlining bars, plotareas, etc. (Default
none). Using this param automatically enables
outlining for most objects

outlineDataRepresentation true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the DataRepresentation (Bars,
Pie, Area, etc.) by setting this property to "false".
Default is "true".

outlinePlotarea true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the Plotarea (the region
bounded by the x and y axes) by setting this property
to "false". Default is "true".

outlineBackground true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the Background (the total
chart image area) by setting this property to "false".
Default is "true".

outlineLegend true/false
If outlineColor is set to some color, you can selectively
turn the outlining off for the chart Legend by setting
this property to "false". Default is "true".

showVersion true/false If this is set to true, the chart will be created with the
version number replacing the chart’s title.

 63

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

annotation0LabelString String A label for note 0 (unlimited notes available) Note: a
“|” character will break this note into multiple lines.

annotation0Alignment above|below|left|right Where note should appear relative to location

annotation0CoordinateSpace pixel|axis Coordinate space for location values

annotation0Xloc Number Pixels or axis values

annotation0YLoc Number Pixels or axis values

annotation0LabelFont Font Font for this note

annotation0LabelColor Color Font color for this note

annotation0FillBackground true|false Determines whether this note will have an opaque
background

annotation0BackgroundColor Color Note’s background color

annotation0OutlineColor Color This note’s outline color (if any)

The following tables contain properties for adjusting axes. Line, area, bar, and
their derivatives use these properties. Axis properties include individual
properties and an option list. The option list groups several properties together.

Axis Related
Properties

Axis Option Lists The option lists include various options for adjusting the look of an X or Y axis.
Use these parameters in a list, like this:

setProperty(“xAxisOptions” “gridOff, tickOff, lineOn”);

If you're modifying an auxiliary Y axis (such as in a chart that has left and right
axes), use the property name auxAxisOptions.

yAxisOptions (xAxisOptions) Effect

autoScale automatically create axis scale (default)
noAutoScale axis scale defined in other properties
rotateTitle "true" if vertical axis title should be parallel with axis
logScaling "true" if axis should use log scaling
lineOn axis line is visible (default)
lineOff axis line is invisible
tickOn major tick marks are visible (default)
tickOff major tick marks are invisible
minTickOn minor tick marks are visible
minTickOff minor tick marks are invisible (default)
labelsOn axis labels are visible (default)
labelsOff axis labels are invisible
gridOn grid lines are visible
gridOff grid lines are invisible (default)

 64

rightAxis this axis goes on the right
topAxis this axis goes on the top
bottomAxis this axis goes on the bottom
leftAxis this axis goes on the left (default)

percentLabels this axis should use localized percentage
representations (not valid for date and label axes)

currencyLabels This axis will use a localized currency representation
for labels (not valid for date and label axes)

If you're modifying an X Axis (usually on the top or bottom of a chart), use
xAxisPropertyName instead of yAxisPropertyName. X Axes are on the left and right
for Horizontal Bar Type charts. Speedo and Polar charts have a single Axis,
which is a Y Axis.

Detailed Axis
Properties

If you're modifying an Auxiliary Y Axis (charts that have left and right axes, for
example), use auxAxisPropertyName instead of yAxisPropertyName.

Axis Property Value Type Effect

yAxisTitle string Axis title
yAxisTitleFont font Axis title font
yAxisTitleColor color Axis title color
yAxisLabelFont font use this font for axis labels
yAxisLabelColor color axis labels in this color (default black)

xAxisLabels list
A comma separated list of user-defined labels for
this Axis. This is only effective for certain types of
chart (BarChart derivatives, LabelLineChart, Area
charts) that use a LabelAxis. By default, LabelAxis
is only used for X axes.

yAxisLabelAngle integer
label rotation in degrees (default 0). Note:
rotations of 0 and 90 degrees will be the most
readable

yAxisLabelFormat
0:default,
1:Comma,
2:European

(default 0) Note: by default, charts will
automatically localize formats based on the Java
Virtual Machine generating the chart.

yAxisLabelPrecision integer Number of digits past the decimal point to display
yAxisLineColor color axis line color (default black)
yAxisTickColor color axis tick mark color (default black)
yAxisGridColor color axis grid line color (default black)

yAxisColor color sets axis grids, ticks, lines and labels to the same
color

yAxisTickLength integer number of pixels long for axis tick marks
yAxisMinTickLength integer number of pixels long for axis minor tick marks

yAxisStart double starting value on axis. By default, axes
automatically determine a starting and ending

 65

value. By setting this value, you can give the axis
a default minimum value. If the Axis is set to
noAutoScale, this value will be used directly.
Otherwise, this value may be adjusted slightly to
yield better looking labels. For example, if you set
yAxisStart to 0.01, the chart may decide to round
the value down to 0.0 to create even axis
increments.

yAxisEnd double

ending value on axis. By default, axes
automatically determine a starting and ending
value. By setting this value, you can give the axis
a default maximum value. If the Axis is set to
noAutoScale, this value will be used directly.
Otherwise, this value may be adjusted slightly to
yield better looking labels. For example, if you set
yAxisStart to 9.99, the chart may decide to round
the value up to 10.0 to create even axis
increments.

yAxisLabelCount integer how many labels on an axis set to noAutoScale

yAxisTickCount integer how many tick marks on an axis set to
noAutoScale

yAxisMinTickCount integer how many minor tick marks on an axis set to
noAutoScale

yAxisGridCount integer how many grid lines on an axis set to
noAutoScale

yAxisGridStyle integer the line style of the grid lines for this axis
yAxisGridWidth integer the width in pixels of the grid lines for this axis
yaxisThresholdLine0Color Color The color of reference line 0 (40 available).

yAxisThresholdLine0LabelColor Color The color of the label for reference line 0

yAxisThresholdLine0LabelFont Font Font for for reference line 0’s label

yaxisThresholdLine0LabelString String Optional label for reference line 0

yAxisThresholdLine0LineStyle Integer Line style for reference line 0

yAxisThresholdLine0Value Double Where on the Y axis should reference line 0 draw.

Tip:

If you want an axis to start at a specific value, but end at some
value based on data, just use yAxisStart without including
noAutoScale among your yAxisOptions.

The following list contains options for Time/Date X axes, such as those used
for dateLineApp and dateAreaApp, as well as financial chart types like stickApp
and hiLoCloseApp

Date and Time
Axis Properties

DateAxis Properties Type Effect

startDate string time/date for axis starting value. Note: this string is passed
into Java's "Date" class to be translated into a machine

 66

independent time stamp. Many time-stamp formats will work.
If you need to use a specific input format, see the Date
Format section above.

endDate string time/date for axis ending value

axisDateFormat string
By default, DateAxis selects an appropriate labelling type
based on your time range and your locale. This property lets
you override the axis labels to use your specific formatting
instructions. See the Date Format table above for more
information on how to use the formatting patterns.

axisSecondaryDateFormat string
Some DateAxes use a primary and secondary format to
highlight important boundaries, like years or hours. This
parameter lets you set the date or timestamp format for one
of these boundaries. See the Date Format section above for
more information on how to use the formatting patterns.

scalingType integer

1 scale by seconds
2 scale by minutes
3 scale by hours
4 scale by days
5 scale by weeks
6 scale by months
7 scale by years

axisTimeZone string

This determines the timezone used for displaying date data.
By default chart objects use the timezone of the server jvm.
This may be incorrect in some cases. For example, if my
servlet is parsing time data in New York, and I want a user in
California to see the data in real-time not New York time,
then this parameter can be used to change the way the data
is displayed. Timezones can be specified by JDK 1.1
deprecated strings like PST, EST, etc., by Java 2 standards:
"America/Los_Angeles", or by the difference from GMT in
this syntax: GMT[+|-]hh[[:]mm] (for example Eastern
Standard Time would be equivalent to "GMT-5:00").

inputTimeZone string

This determines the timezone used for parsing date data. By
default chart objects use the timezone of the server jvm.
This may be incorrect in some cases. For example, if my
data is based in New York, my client's applet is parsing time
data in California, and I want my user to see the data in real-
time, then this parameter can be used to change the way the
data is parsed. This is an alternate to inputting the timezone
in your date strings. Timezones can be specified by JDK 1.1
deprecated strings like PST, EST, etc., by Java 2 standards:
"America/Los_Angeles", or by the difference from GMT in
this syntax: GMT[+|-]hh[[:]mm] (for example Eastern
Standard Time would be equivalent to "GMT-5:00").

Dataset colors and styles are very important to KavaChart applets. These colors
are used to define the color of bars, pie slices, legend icons, and so on.

Dataset Related
Color and Style
Parameters

Dataset Parameters
(available datasets 0 through
39)

Type Effect

dataset0Name string name for display in legend (default "dataset0")
dataset0Color color color to use for this dataset (default varies)
dataset0Colors list of colors colors to use for pie slices or bars (default varies)

 67

dataset0SecondaryColor color
The Color to be used as the second color with
dataset textures/gradients. The default is
transparent.

dataset0SecondaryColors list of colors Colors to be used as the second color with dataset
textures/gradients. The default is transparent.

dataset0Gradient integer
Sets the gradient for this dataset. Available
gradient values are 0 for left/right mirrored, 1 for
top/bottom mirrored, 2 for top to bottom, and 3 for
left to right

dataset0Gradients list of
integers

Sets the gradients for this dataset. For available
values see datset0Gradient.

dataset0Texture integer
Sets the texture for this dataset. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal
up stripes, 4 for cross hashing, and -1 to use the
dataset image to create the texture.

dataset0Textures list of
integers

Sets the textures for this dataset. For available
values see datset0Texture.

dataset0Image Filename or
URL

image to use for this dataset's markers (default
none). Use this property to define line markers for
scatter plots.

dataset0Images list of
filenames

images to use for this chart's markers (default
none). Use this property to define individual line
markers for scatter plots. These values will also be
used as fill images for pie charts or individually
colored bar charts.

dataset0MarkerStyle integer
Specify an internal marker for line charts and
scatter plots (0=box, 1=diamond, 2=circle,
3=triangle). Default is -1 (none)

dataset0MarkerStyles list of
integers

Specify internal markers for datsets drawn with
different markers at each data point. See
datset0MarkerStyle for available marker values.

dataset0MarkerSize integer pixel width of internal marker for line charts and
scatter plots.

dataset0MarkerSizes list of
integers

pixel widths of internal markers for line charts with
individual markers

dataset0LineWidth integer pixel width of plot line

dataset0LineStyle integer
Sets the line style for this line. Available values for
this parameter are 0 for dashed, 1 for dotted, 2 for
dot-dashed, and -1 for solid (default = -1).

dataset0LabelFont font font to use for this dataset's labels (default
TimesRoman 12pt)

dataset0LabelColor color color to use for this dataset's labels (default black)

 68

Chapter

6
Server Chart Objects
This chapter details the specific chart objects available in KavaChart
ProServe. These charts can be used directly in a servlet or scriptlet, or can
be named in a Chart Tag.

Each chart type has a few properties that deal with the specifics of that chart
type. For example, pie charts have a property that lets you set the starting angle
of the pie. This property doesn’t make sense for bar charts.

In a chart tag, charts in the javachart.servlet package are identified by the class
name. For example, if you wanted to use a column chart, you’d use a tag like
this:

<chart:streamed chartType=”columnApp” … />

An area chart uses polygons to describe trends. This type of chart is most
appropriate for trends that include cumulative values. For example, an area
chart may be most appropriate for displaying revenue trends for several
categories. The overall trend appears at the top, while each item’s contribution
would appear as a layer.

Area Charts

com.ve.kavachart.servlet.areaApp

 69

AreaApp ignores your X value specifications and assumes the values are 0, 1, 2,
3, … This ensures that the areas will align properly. Use the xAxisLabels
parameter to specify your actual labels.

Because area charts are used to display cumulative trends, they don’t generally
give a clear idea of where individual data points are. For this reason, they’re
most appropriate for general trends. Also, dwell labels and hyperlink hot spots
run from mid-point to mid-point for this type of chart.

It’s important for area charts with multiple datasets to use the same X values for
every dataset. Otherwise the areas cannot stack properly.

Note that un-stacked, 3D area charts are problematic. Areas can become
completely obscured, as in the final observation in the chart below:

com.ve.kavachart.servlet.dateAreaApp

AreaApp ignores your X value specifications and assumes the values are 0, 1, 2,
3, … This ensures that the areas will align properly. Use the xAxisLabels
property to specify your actual labels.

DateAreaApp assumes that X values are timestamps as described in the section
above on data for time oriented charts. It also uses X axis parameters for time
oriented charts.

Because area charts are used to display cumulative trends, they don’t generally
give a clear idea of where individual data points are. For these charts,

 70

“getLinkMap()” define regions that go from mid-point to mid-point for each
observation.

Property value type effect

baseline double sets the baseline value for this area

stackAreas true/false determines whether the areas will be stacked on top of each other
(default is true)

These charts include: Line and Scatter
Charts

com.ve.kavachart.servlet.lineApp

com.ve.kavachart.servlet.regressApp

 71

com.ve.kavachart.servlet.dateLineApp

com.ve.kavachart.servlet.labelLineApp

com.ve.kavachart.servlet.disLineApp

 com.ve.kavachart.servlet.disLabelLineApp

In general, these charts can be used as conventional line charts, with or without
markers at each vertex. Plot lines can be turned off with the “plotLinesOff”
property or the dataset0Color property. If markers are turned on with lines
turned off, these charts become scatter plots. You can plot some dataset lines
and make others invisible by setting dataset0Color to “transparent” for the
scatter-only datasets.

Chart objects that begin with “dis”, such as disLineApp, support discontinuous
data. They will create line breaks where data is missing. See the data section
above to understand how to define discontinuities

 72

DateLineApp uses time oriented data, as discussed in the data section above.
These charts also recognize properties for formatting time oriented axes,
discussed above.

RegressApp performs a simple linear regression calculation on the chart’s data
values. Markers appear at the actual data points, while the line is drawn
according to the regression’s prediction. This is a classic “scatter plot” that
shows positive, negative, or no correlation, and gives visual feedback about the
strength of that correlation.

Property value
type

effect

plotLinesOn anything plot lines should display (default)
plotLinesOff anything Create a scatter plot by making plot lines invisible

individualMarkers true/false
If markers are used, this parameter determines whether or not the
datum markers will be used rather than the dataset marker (default
is false).

This category includes both charts with vertical and horizontal bars, as well as
hi-lo bars. The charts are:

Bar and Column
Charts

com.ve.kavachart.servlet.barApp

com.ve.kavachart.servlet.columnApp

 73

com.ve.kavachart.servlet.stackBarApp

com.ve.kavachart.servlet.stackColumnApp

com.ve.kavachart.servlet.hiLoBarApp

 74

com.ve.kavachart.servlet.hHiLoApp (horizontal hi lo bars)

com.ve.kavachart.servlet.dateBarApp

com.ve.kavachart.servlet.dateColumnApp

com.ve.kavachart.servlet.dateStackBarApp

com.ve.kavachart.servlet.dateStackColumnApp

 75

Bar charts have variable bar width, an adjustable baseline, and labels that can be
toggled on or off. If you don't include a parameter to define X axis labels, this
chart will use item labels (parameter dataset0Labels) beneath each bar. If item
labels aren't defined, this chart will display each bar's Y value beneath it.

If you want each bar to have a different color, set the property
“individualColors” to true, and define the colors with “dataset0Colors”.

StackBarApp and stackColumnApp stack datasets instead of clustering them.
This is useful to display a cumulative summary along with the individual data.

Charts that begin with “date” use time oriented data, as described above. These
charts also support the use of time oriented axis formatting parameters, as
described above.

If you’re in a Java 2 or newer environment, dataset image parameters will cause
your bars to be drawn using tiles of the specified image.

Property value
type

effect

barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series defined,
this value describes the total width of a cluster of bars.

individualColors true/false
In bar/column charts that normally use only the Dataset color for
drawing bars this will determine whether datum colors should be
used instead (default is false).

useValueLabels true/false Determines whether y values or data labels are used for bar labels.

dataset0y2Values List This list of numbers is used to add error bars to each bar (Note:
error bars also require “X” values to operate

errorBars true/false Determines whether error bars should be displayed

Pie Charts are drawn with com.ve.kavachart.servlet.pieApp. Pie Charts

 76

Pie charts can toggle percentage, value, and textual labels. They can also set a
beginning angle value, and can set an exploded slice for emphasis. Pie chart
colors are defined with the parameter dataset0Colors. Pie charts ignore datasets
beyond dataset0.

Pie Chart
Properties

value
type

effect

explodeSlice integer slice number to explode

explodeSlices list of
doubles

This will be list of explosion values for each slice. Explosion
values should be between 0 and 1, but generally pretty close to 0.
The default value when a slice is exploded with explodeSlice is
.05

textLabelsOn anything make string labels visible
textLabelsOff anything make string labels invisible (default)
valueLabelsOn anything make numeric labels visible
valueLabelsOff anything make numeric labels invisible (default)
percentLabelsOn anything make percentage labels visible (default)
percentLabelsOff anything make percentage labels invisible
percentPrecision integer the number of digits of precision for Pie percent labels

labelPosition integer 0: at center of slice, 1: at edge of slice, 2: outside edge of slice
with pointer

startDegrees integer degrees counterclockwise from 3 o'clock for first slice
xLoc double x Location for center of pie (between 0 & 1, default 0.5)
yLoc double y Location for center of pie (between 0 & 1, default 0.5)
pieWidth double % of window for pie diameter (default .6 = 60%)
pieHeight double % of window for pie diameter (default .6 = 60%)

pointerLengths list a values to redefine the pointer lengths for external labels. By
default, this value is 0.2.

lineColor Color redefines the color used for pie slice pointers
 Combinations: Bar-

Area Chart
BarArea charts layer bars over areas, with shared axes. BarArea charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Area style charting. Bars draw over areas, and may be stacked or clustered. Areas
are always stacked.

com.ve.kavachart.servlet.barAreaApp

 77

Parameter value
type

effect

datasetNType Bar|Area dataset N will be either Bar or Area, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

Bar-Line charts layer lines over bars, with shared axes. BarLine charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Line style charting. Lines draw over bars, and bars may be stacked or clustered.

Combinations: Bar-
Line Chart

com.ve.kavachart.servlet.barLineApp

 78

Parameter effect

datasetNType Bar|Line dataset N will be either Bar or Line, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

value
type

These include com.ve.kavachart.servlet.speedoApp and
com.ve.kavachart.servlet.hSpeedoApp. The only difference between these two
Is that hSpeedoApp adds a history mark in the background; a sort of high water
mark.

Speedos

Speedo charts have adjustable axis locations and styles, as well as adjustable
needle styles. This chart can be particularly useful in conjunction with an image
background to superimpose a dial and needle on a scanned image of a physical
gauge.

Speedos only use the first value of dataset 0. However, the other values in
dataset 0 are considered for building the speedo’s scale.

Speedo Chart
properties

value
type

effect

needleStyle integer Kind of needle (default 1) 0 = arrow, 1 = line, 2 = thick arrow, 3
= swept arc

speedoPosition integer 0 (default) is a mostly complete circle, 1 - 4 are semi circles in
various positions, 5-8 are quarter circles in various positions

 79

labelsInside anything labels on the inside of the speedo
labelsOutside anything labels on the outside of the speedo
watermarkColor color for hSpeedoApp, determines the color of the history watermark

KavaChart “radar charts” or “polar charts” are also called “Kiviat Diagrams”.
These charts draw multiple spoke axes, with a line for each dataset encircling the
center. By default, these charts assume one axis spoke per observation, and they
assume that all datasets have the same number of observations.

Radar Charts

Polar Chart
Properties

value
type

effect

manualSpoking true|false If defined, you are responsible for determining how many
"spokes" should be drawn in this chart's axis representation

numSpokes integer The number of spokes in this chart's Axis system (default 4)

Use com.ve.kavachart.servlet.bubbleApp to build a bubble chart. This chart
draws circles at X,Y values specified by dataset0xValues and dataset0yValues.
The size of the circle is determined by dataset0y2Values.

Bubble Charts

 80

These charts may have filled or hollow circles, crossing X and Y axes, and
manual or automatic Z scaling. Z scaling refers to the relative size of the
bubbles, based on the overall set of Z (y2) values.

Bubble Chart
Properties

value
type

effect

zAutoScaleOff anything Indicates that you want to set the Z scaling (in terms of a
percentage of the Y axis scale.

setZScale double
Sets the size of bubbles, relative to Y axis units. For example, if
the y2 value for a particular bubble is 10 and zScale is set to 2,
then the bubble’s diameter will be twice as big as a 10 unit
increment on the Y axis.

crossAxes Boolean Determines whether the X and Y axes should cross. If true, the
default crossing value is 0, 0.

xCrossVal double Where the Y axis should cross the X axis.

yCrossVal double Where the X axis should cross the Y axis.

Gantt charts are a specialized chart designed to show when tasks start and end.
This sort of chart is particularly useful for resource allocation and project
planning, but it can also be used to visually describe the progress of multiple
projects or processes.

Gantt Charts

com.ve.kavachart.servlet.ganttApp

This chart uses the special params dataset0StartDates and dataset0EndDates to
describe the start and end of each colored bar on track “0”. Each dataset is
arrayed along a single track. In the example above, we’re using dataset0 and
dataset1 to represent United States and Japanese leader’s tenure, respectively.
The tooltip label shows the start and end value along with the label (leader’s
name in this case)

A “discontinuity”, or invalid value, like “x” in place of a date creates a torn edge,
like the end point on the United States bar, when the property “useTearEdge” is
set to “true”.

 81

Another special property for this chart, minBarWidth, ensures that very narrow
bars, like those in the applet above, will remain visible.

If you’re using a DataProvider class to supply data to this kind of chart, start and
end values are provided with Y and Y2 values respectively. These values are
derived from the long value returned by java.util.Date.getTime(), or
java.sql.Date.getTime().

Parameter value type effect

dataset0StartDates list
A list of dates in “inputDateFormat” format, describing the
start times/dates for each item in a particular row.
Datasets 0 through 39 are available. Dataset names are
used to label the vertical axis.

dataset0EndDates list
A list of dates in “inputDateFormat” format, describing the
ends for each bar segment in a particular row. An un-
parseable date, like “XX”, would be interpreted as an
incomplete task.

dwellLabelDateFormat Date format A format string to describe start and end dates

dwellStartString String
This string defines the dwell label string for the start date.
This string should have 'XX' characters where the date
will occur. Default is "Start XX"

dwellEndString String This string defines the dwell label string for the end date.
Default is "End XX"

dwellIndefiniteString String This string defines the dwell label string for an indefinite
start/end. Default is "Indefinite"

Sectormap charts are very efficient visuals for displaying certain kinds of data.
The size of each square in a sectormap represents its relative size (Y value)
within the dataset, and the color of the rectangle represents another factor, such
as price change (X value). Each dataset is bounded by a rectangle that
represents the Dataset’s overall contribution to Y values for the entire set of
datasets.

Sectormap Charts

com.ve.kavachart.servlet.sectorMapApp

 82

A sectormap could be used to represent financial values in a customer’s
portfolio, for example, where each data represents a market sector (e.g. finance,
transportation, utilities, etc.), and each item in the dataset represents a particular
security in that sector. You can tell at a glance how your portfolio is performing,
which sectors are doing well in the displayed time period, and which stocks are
having the most impact on your portfolio.

Parameter value type effect

individualColors True|false Determines whether colors should come from
“dataset0Colors”

gradientColoring True|false Determines whether colors should be auto-graduated
from the dataset color to the “secondary color”

sectorSecondaryColor Color A second color to be used for gradient coloring

baseColor Color
A color to be used as a neutral value when “baseValue”
is used, giving effectively a 2 dimensional gradient –
dataset color to base color to secondary color

baseValue Double A value to be used for the baseColor.

BarArea charts layer bars over areas, with shared axes. BarArea charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a property to define X axis labels, this chart will use item labels (defined with
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Area style charting. Bars draw over areas, and may be stacked or clustered. Areas
are always stacked.

Combinations: Bar-
Area Chart

com.ve.kavachart.servlet.barAreaApp

 83

Property value
type

effect

datasetNType Bar|Area dataset N will be either Bar or Area, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

Bar-Line charts layer lines over bars, with shared axes. BarLine charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Line style charting. Lines draw over bars, and bars may be stacked or clustered.

Combinations: Bar-
Line Chart

com.ve.kavachart.servlet.barLineApp

 84

Property value
type

effect

datasetNType Bar|Line dataset N will be either Bar or Line, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

This collection includes some standard charts for dealing with financial data:
com.ve.kavachart.servlet.candlestickApp and
com.ve.kavachart.servlet.hLOCApp use 4 Y values for each observation at a
single date or time. These are the high, low, open, and close prices for a
particular time period.

Candlestick and
OHLC Charts

com.ve.kavachart.applet.candlestickApp

com.ve.kavachart.applet.hLOCApp

Special properties for these charts:

 85

Parameter value type effect

dataset0highValues list High price at observed dates
dataset0lowValues list Low price at observed dates
dataset0openValues list Open price at observed dates

dataset0closeValues list Close price at observed dates

dataset0dateValues list List of dates in “inputDateFormat”

CustomDatasetHandler URL A url containing rows of date,open,high,low.close values

com.ve.kavachart.servlet.hiLoCloseApp is very similar to Candlestick and
OHLC charts, but it uses 3 Y values for each time period. These represent the
high, low, and closing prices for a particular time period. Close data is provided
with dataset Y values, high data is Y2 and low data is Y3.

com.ve.kavachart.servlet.stickApp is similar to a bar chart, but draws a narrow
bar, or “stick’ at each time period. The width of these bars can be specified in
pixels. Multiple datasets do not stack or cluster.

Stick Charts

This chart is frequently combined with a hi-lo-close, candlestick or ohlc chart to
display price over volume:

com.ve.kavachart.servlet.finComboApp combines hiLoClose, line, and stick
elements into a single chart with multiple windows. The “splitWindows”
parameter determines whether all datasets will appear in a single window, or
each dataset should appear in a unique window.

Combination
Charts

The best way to supply data to these charts is through an implementation of
com.ve.kavachart.utility.DataProvider. The datasets provided by this
DataProvider should supply datasets that contain
com.ve.kavachart..parts.CandlestickDatum classes. See the demos for several
examples that supply candlestick data. You can also download one of these
DataProviders here:

 86

http://www.kavachart.com/sample_classes/examples.zip

Finance charts can also read data from a URL specified through the parameter
“customDatasetHandler”. The expected input stream has a column of dates or
times in the format specified by the “inputDateFormat” parameter, and then a
number of columns of Y data. Each dataset consumes the number of columns
appropriate for its data type. For example, in a candlestick chart, each dataset
uses the first column as the X axis period, and then uses 4 columns for high,
low, open, and close data. A stick would use the first column for the date or
time, and then use a single column for each dataset’s Y (or price, volume, etc.)
values.

Property value type effect

datasetNType HLOC|Stick|Line dataset N will be either Stick, HLOC, or Line, based on this
value. (finComboApp only).

splitWindow true|false
if true (default) each dataset type will be in a a separate window
with an independent Y axis. The X axis will be shared among all
dataset types.

stickWidth Integer Width (in pixels) of stick bars (stickApp only).

Some of the multiple axis combination charts and time oriented charts are
frequently used for financial data.

The KavaChart Enterprise Edition also includes a “kcfinance” package, which is
specifically designed to support most common finance charts. This package
takes some coding to attach data sources properly, but it’s much more
sophisticated than the more basic server classes at representing financial data.
“Kcfinance” is especially well suited for generating images on a server.

It’s also worth noting that there are also several finance-oriented charts in the
com.ve.kavachart.contrib. package, which is part of the KavaChart Enterprise
Edition. These include charts that overlay markers on candlestick charts, box-
jenkins statistical charts, and histograms. Also, with a little bit of Java
programming, you can combine various KavaChart elements into an endless
variety of custom finance charts. These elements are described in more detail in
other chapters, as well as documentation on how to put these custom charts
into the same applet or servlet framework as standard off-the-shelf KavaChart
charts.

Many combination charts are more useful if elements are assigned to different Y
axes. For example, you might want to compare trends for baseball scores and
basketball scores in the same chart. Baseball scores will be much lower, but
there still might be some discernable trend. In this case, you could just use
twinAxisLineApp to assign baseball scores the the right axis, and basketball
scores to the left axis.

Combinations:
Multiple Axis
Charts

 87

twinAxisBarAreaApp: assigns bar data to the left axis and area data to the
right (auxAxis).

twinAxisBarLineApp: assigns line data to the left axis and bar data to the
right (auxAxis).

twinAxisDateComboApp: uses time oriented data, and time oriented axis
parameters for the X axis. Datasets can be bar, line, area, or stick, and may
be assigned to either left or right axes.

twinAxisDateLineApp: uses time oriented data, and time oriented axis
parameters. Datasets are assigned to the left axis by default, and the right
(auxAxis) by parameter.

 88

twinAxisLineApp: uses numeric X values. Datasets are assigned to the left
axis by default, and the right (auxAxis) by parameter.

twinAxisStackBarLineApp: uses a Line element for the left axis, and a
StackBar element for the right axis. Axis assignment is implied by the
dataset type.

To change the colors, fonts, title, scaling, etc. for the right axis, use “auxAxis” in
place of “yAxis”. For example, to set the title, you would use the parameter
“auxAxisTitle” for the right, and “yAxisTitle” for the left.

Property value type effect

datasetNType Bar | Line |
Area | Stick

This determines the DataRepresentation for datasetN. “Area” is
only available for TwinAxisBarAreaApp, Line is not available for
TwinAxisBarAreaApp, and so on. Stick is only available for
TwinAxisDateComboApp

datasetNonRight true|false

This determines whether dataset N will be assigned to the
standard left axis or the auxilliary right axis. Only applicable to
twinAxisDateLineApp, twinAxisLineApp, and
twinAxisDateComboApp. Other charts assign one data
representation type (e.g. bar) to the primary axis, and the other
(e.g. area) to the auxiliary axis.

plotLinesOn anything plot lines should display (default) Applicable to all of the Twin

 89

Axis Charts except twinAxisBarAreaApp.

plotLinesOff anything Create a scatter plot by making plot lines invisible. Appicable to
all of the Twin Axis Charts except twinAxisBarAreaApp.

auxPlotLinesOn anything
plot lines should display (default). Applicable to
twinAxisDateLineApp, twinAxisLineApp, and
twinAxisDateComboApp.

auxPlotLinesOff anything
Create a scatter plot by making plot lines invisible. Applicable to
twinAxisDateLineApp, twinAxisLineApp, and
twinAxisDateComboApp.

barBaseline double Bars ascend or descend from this value. Also applicable to
Sticks in twinAxisDateComboApp.

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50%
of the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

areaBaseline double sets the baseline value for this area

auxBarBaseline double sets the baseline value for the Sticks assigned to the aux axis in
TwinAxisDateComboApp

barWidth integer sets the width in pixels of the Sticks in TwinAxisDateComboApp

auxBarWidth integer sets the width in pixels for the Sticks assigned to the aux axis in
TwinAxisDateComboApp

Using a Properties Object or File
In our scriptlet examples so far, we have always used the "setProperty" method
to assign property values. There are other ways to set chart properties, and you
can combine the various property setting techniques to optimize your server
chart implementation.

You can store your chart properties in an external properties file, which the
chart object reads during chart generation. This file is specified with the
property named “properties”.

Property Files

Putting properties in an external file has some significant benefits. If your charts
are very different from the default charts, your JSP or servlet can become
cluttered with calls to “setProperty”, making your code appear more
complicated than it really is. This sort of inline coding is also not particularly
portable, except by doing cut-and-paste operations. Putting all the properties in
your code also makes you responsible for the overall style and appearance of the
chart, and there might be someone in your organization better suited to creating
stylish charts.

 90

By putting your properties in an external file, your code can focus on the task of
acquiring data and translating it into dynamic page content. The properties file
can contain all non-dynamic page content, and can be used for multiple chart
types to create uniform colors, fonts, etc.

Note:

If you’re using a ChartTag, properties files are used for the “style”
attribute. These persist in your application memory unless you
override this feature by specifying that you want to reload styles
with every image.

You can also use a single properties file for several applications, even though the
data acquisition logic may vary dramatically.

A properties file is a text file that looks like this:

titleString=Annual Sales
backgroundColor=00ffa6
plotAreaColor=00ff77
dataset0Color=green
yAxisLabelFont=Arial,12,0

And so on.

You can also construct your chart objects with a pre-existing java.util.Properties
object. This approach is very efficient for some application architectures.

Constructor
Properties

For example, if you’re building a servlet, you can put the Properties into a class
variable that is instantiated one time, when the servlet is instantiated. Even
though you will create a new chart object every time the servlet services a
request, you can reuse the exisiting Properties object. In this case, your servlet
may store the properties in an external file, but that file is read only one time,
when the servlet starts. After that, you get the benefits of an external properties
file without having to re-read it to service each request.

The online chart wizard exports definitions like this. See the servlet or JSP
scriplet output produced by the wizard for specific examples.

 91

Chapter

7
Image Format
Recommendations
KavaChart supports most popular image formats. Which one is best
for your application? That depends on the application, but every image
encoder has pluses and minuses. These are discussed below

The GIF89a image format is probably the most widely used on the worldwide
web. It provides excellent compression for images that have 256 colors or less,
and has some nice features, like transparency and animation.

GIF

KavaChart uses a built-in GIF generator when the “imageType” property is set
to “gif”. This image encoder reduces all images to 256 colors by dithering, and
lacks support for transparency.

If you require GIF output with no dithering, or GIF output with transparency
support, see the chapter on programming server objects for more information
about installing custom image encoders.

The JPEG image format is ideal for high color images, such as photographs. JPEG

Select an imageType of “jpeg” to use a native JPEG encoder that is available on
most Java 2 runtime environments. Despite the promise of high performance
from native code, in practice, the java based encoders (imageType=j_jpeg) are
nearly as fast.

JPEG has some drawbacks when rendering chart output. Because it’s designed
for photographic images, and uses a lossy compression algorithm, lines (such as
axis lines, bar outlines, etc.) may appear blurry. Depending on your situation,
however, the image quality might be appropriate.

JPEG also lacks support for transparency. This image format is supported by
every web client. Also, this image format requires no special licensing for
production use.

 93

PNG is KavaChart’s default image format. Portable Network Graphics (PNG)
holds the promise of eventually replacing GIF, and supplanting JPEG for some
applications. If you are generating charts for browsers that support PNG, this is
an ideal format for KavaChart output.

PNG

Unfortunately, some browsers (notably many older Macintosh browsers) lack
support for this format, which may limit its usefulness in your production
environment.

Select PNG with the property “imageType=j_png”.

KavaChart can produce Macromedia Flash “movies” that represent charts.
Flash has a number of advantages over other image formats: It’s a “vector”
format, which means that the information is rendered on the client browser.
Definitions can be scaled (zoomed in and out by a user), and they carry a built-in
set of tooltips and hyperlinks with the flash data stream. KavaChart’s
highlighting and tooltip behavior is much more animated than the default
tooltip labels associated with other image types. Flash output is also
“antialiased”, which removes the jagged edges associated with the edges of pie
charts or diagonal lines. Flash output is very highly compressed, so users
perception of performance tends to be very good. The Macromedia Flash plug-
in is installed by default on most browsers.

Flash

On the other hand, some users are in organizations that don’t permit the Flash
plug-in. Flash output can’t be copy/pasted into other applications. Also some
users dislike the slight “blurring” of character edges caused by Flash antialiasing.

In a high-volume production environment, Flash has the advantage of being a
vector and polygon format; it doesn’t require as much image memory on the
server as generating true image formats.

Because Flash output is not image output, you’ll need to place this output into
your own OBJECT and EMBED tags if you’re not using the KavaChart tag
library. See Macromedia’s developer site for more information about the
correct syntax for these tags.

Select the Flash format with “imageType=flash” or “imageType=swf”.

Another vector format available through KavaChart is “Scalable Vector
Graphics”. SVG support is available in some browser installations, although it’s
not as widespread as Flash or image support. KavaChart’s SVG support is very
similar its Flash output: highly animated tooltips and highlighting, highly
compressed vector output, etc. You can download and install SVG support
from Adobe’s SVG web pages.

SVG

Although some browsers will recognize and handle SVG as a MIME type, you
will generally need to use EMBED tags to handle this data type with Adobe’s
plug-in.

 94

Select SVG format with “imageType=svg”.

The BMP format is supported in most Windows applications, and is a non-lossy
image format, so the images are crisp. Unfortunately, charts created in BMP
format are not compressed, and image data can be very large. BMP files are
typically not appropriate for web based documents, and are not supported in all
browsers.

BMP

Select BMP format with “imageType=j_bmp”.

Other KavaChart formats, such as XBM, XPM, and ICO are not widely used
for document images. These formats are lossless (except for color data in
XBM), but lack compression. If you require one of these image formats, you
will likely understand the implications of its use.

Other Formats

KavaChart server objects have a plug-in architecture that permits you to define
your own image or graphics encoder. The KavaChart Enterprise Edition
includes code samples that implement two of the most popular image and
graphics formats.

External Formats:
PostScript, GIF
Transparency

The first is a PostScript encoder, based on a public domain PostScript generator.
The PostScript generator gives you high-quality, scalable output appropriate for
printed documents.

The samples also include an implementation that uses the popular and free
Acme GIF encoder to produce transparent GIF output.

To find out more about these external encoders, see the section in the
programming chapter for information about installing image encoders.

 95

Chapter

8
JSP ChartTag
Overview
ChartTags hide the complexity of managing server chart imaging,
making them the preferred method for building multi-tier JSP
applications.

Setup
KavaChart's Tag Library is described by the file kavachart-taglib.tld. This file
contains an XML description of the various chart tags and inner tags, including
a description of what tag attributes are available, required, and available for
runtime evaluation.

Integrate Taglib
Descriptor and
web.xml

Place this file in an appropriate location in your application directory hierarchy,
such as WEB-INF/kavachart-taglib.tld.

To integrate KavaChart tags into your own server, you’ll also need to integrate
the KavaChart web.xml into your own web.xml configuration file. KavaChart’s
web.xml includes <servlet> definitions, <servlet-mapping> definitions, and a
<taglib> definition. Remember that XML is order-dependent, so you’ll need to
place these definitions in various places in your own web.xml file.

Create a Chart Style
Chart styles are stored in properties files. The chart tag reads these properties on
startup, and then (by default) stores them in memory for subsequent chart
generation requests.

KavaChart’s Chart Wizard generates chart properties for all of KavaChart's
chart types. These properties are generally also applicable to custom charts.

Use the
ChartWizard

 96

The ChartWizard starts with a specific chart type and a pixel size for your target
image, and lets you interactively edit your chart style. There are a variety of
options in the wizard for simulating your data sources. Since your data sources
will most likely provide live data, data definitions are not created as a part of the
wizard's output.

After you have edited your chart style and stepped through the wizard's
questions about your output targets, you'll end up with a complete chart tag and
property sheet to integrate into your JSP.

 97

Copy and paste the properties section of this output into a properties file. Copy
and paste the tag definition into your JSP. Make sure you add the "include"
statement, as described in the "Edit Your JSP" section of this document. If
necessary, these definitions can be edited later with any sort of text editor.

Note that even though this style was created for a particular chart type, you can
change the chart type as a part of your chart tag. You might start out with a
stacked column chart, for example, and later decide that side-by-side columns
better represent your information.

All that's left is to create a DataProvider that links your chart generation tags to a
live data source.

Create a DataProvider
A DataProvider is an implementation of the KavaChart Interface
"com.ve.kavachart.utility.DataProvider". By implementing this simple interface
in your existing data sources, you can easily translate text and numeric
information into graphics.

Your DataProvider can be used within the KavaChart Wizard, too. You can
even create a graphical user-interface for your DataProvider for use with the
Wizard. See Appendix C for more information about this topic.

The Interface:

 98

public Interface com.ve.kavachart.utility.DataProvider {
 /*
 ** Returns an Enumeration of Dataset classes.
 */
 public Enumeration getDatasets();
 /*
 ** Returns a String that uniquely identifies this data.
 ** Needed to make chart image caching work properly.

 ** Otherwise unnecessary.
 */
 public String getUniqueIdentifier();
}

You probably already have some kind of data connection that provides you with
data for a table, some summary figures, etc. It's a good idea to use the same
connection to implement DataProvider so you don't have to make multiple
database connections, or use up otherwise scarce server resources. You might
want to implement DataProvider with your existing DataSource class.

Here's one example, based on a pre-existing database connection:

ArrayList chartData;
String query = "SELECT SUM(REVENUES) FROM WIDGETS WHERE QUARTER='Q1'";

public void getSomeData(){

 //-------- a bunch of database connection setup stuff deleted here...
 statement = connection.createStatement();
 myresult = statement.executeQuery(query);
 while (myresult.next()){ //retrieve next row
 int i=0;
 //you're going to do something else interesting with the data here...
 series0yValues.addElement(myresult.getString(i++));
 series0Labels.addElement(myresult.getString(i++));
 }

 //create some KavaChart data - this is one way to do it...
 //first series
 double yVals[] = new double[series0Values.size()];
 String labels[] = new String[series0Labels.size()];
 for(int i=0;i<yVals.length;i++){
 yVals[i] = Double.valueOf(series0Values.elementAt(i)).doubleValue();
 labels[i] = (String)series0Labels.elementAt(i);
 }
 Dataset set1 = new Dataset("series 1", yVals, labels, null);

 //put them into our Vector, declared as a Class variable:
 chartData = new ArrayList();
 chartData.add (set1);
}

 99

//and finally the DataProvider implementation:
public Enumeration getDatasets(){
 return Collections.enumeration(chartData);
}

//a unique identifier to prevent chart collisions in a multi-threaded

environment
public String getUniqueIdentifier(){
 return query; //not unique here, but it will be in your class
}

This code segment creates a KavaChart Dataset class, and then puts it into an
ArrayList. It returns that ArrayList’s elements, along with the query string. The
query string is simply used as a unique identifier in the event that multiple
threads are requesting charts at the same time. It won't appear anywhere in the
HTML or image data generated by the chart tag.

As you can see, implementing the Interface consists of creating 1 or more
Dataset classes and placing these into a List or other Enumeration. You're free
to determine how these classes are constructed, what data to consider in the
Dataset, whether labels or X values are relevant, and so on. Numerous Dataset
constructors exist. Consult the KavaChart API documentation for more
information on constructing Datasets.

The chart tag retrieves the DataProvider from the page, session, or application
context. To do this, the DataProvider must be placed into the context at some
point during the page generation process.

Install your
DataProvider

One way to accomplish this is to create a JavaBean from your DataProvider,
and install it as a part of the page definition:

<jsp:useBean id="dataId" scope="page"
class="examples.RandomNumberDataProvider" />

This statement, for example, installs RandomNumberDataProvider into the ID
"dataId". This class is provided with KavaChart's taglib example classes to
provide sample data where no real data exists. It might also be useful in cases
where you don't have a real DataProvider ready, but the page designer wants to
proceed.

A more likely methodology involves installing the DataProvider with a small
scriptlet, or as another part of your overall page generation code. For example,
let's say we have a data acquisition class instance "myDataSource" that
implements our DataProvider interface. We might create that class like this:

RandomNumberDataProvider myDataSource = new RandomNumberDataProvider();

And then you would install the DataProvider like this:

 100

pageContext.setAttribute("dataId", myDataSource);

Since we named our DataProvider "dataId", the chart tag would reference it like
this:

<chart:streamed
 dataProviderID="dataId"
 style="WEB-INF/myStyle.properties"
 chartType="lineApp" >
</chart:streamed >

When the tag is executed, a KavaChart "lineApp" server bean is created, data
from the DataProvider "dataId" (actually the class instance "myDataSource") is
applied to the bean, styles from "myStyle.properties" are applied, and the image
bytes are streamed back into the page.

Installing your DataProvider in the most appropriate context will ensure the
most efficient use of that resource. For example, DataProviders placed into the
application context will persist for the lifetime of the application, and can be
shared by all users who generate charts. This might be appropriate for shared
information, like weather data. Page context resources will be discarded after
each page is viewed. This is appropriate for charts that have page-unique
information, like a pie chart showing a user's financial portfolio distribution.

Since data management is cleanly separated from the presentation layer, the
DataProvider can change dramatically without altering the overall page
presentation, and vice-versa.

Edit Your JSP
As we discussed above, KavaChart's ChartWizard will generate a chart tag with
the appropriate attributes and properties file for the chart you created there. You
can also directly edit and create chart tags and property sheets. Here's how to
add a chart tag to your JSP:

Add an Include Statement

Add this line to your JSP:

<%@ taglib uri="http://www.ve.com/kavachart-taglib" prefix="chart" %>

This assumes that your web.xml file includes a definition for the kavachart-
taglib.tld taglib descriptor, and that the taglib URI in that description matches
the uri above. You can use any prefix you like. We'll use "chart" for our
examples here.

Example: Add a Chart Tag

<chart:streamed
 dataProviderID="myData"

 101

 style="WEB-INF/myStyle.properties"
 chartType="pieApp" >
</chart:streamed >

Chart tags use a form like the example above. Each tag starts with a reference to
the taglib you're using ("chart" in our case), and then the particular tag you're
using ("streamed" in this example).

Chart tags can use several attributes. The three attributes used in this example
are the most important:

1. dataProviderID supplies the data for this chart. See the section
above for more information on how to create a DataProvider and
set its ID.

2. style specifies the name of a properties file used to modify this
chart's appearance. The “Styles” section above describes how to use
the KavaChart Chart Wizard to create these properties files.

3. chartType specifies the KavaChart server bean to be used to build
the chart image. You can use any of KavaChart's server chart beans,
or you can build and use your own chart bean using the KavaChart
server bean framework.

When the JSP is compiled into a servlet, this tag is translated into Java code. The
tag approach optimizes the chart generation process by caching persistent
information like style properties or frequently accessed images. The tags also
simplify things like localization, data filtering, and so on.

This particular tag is translated into an image tag that retrieves its image data
from a helper servlet. Other tags will represent the chart with an applet, or by
creating a cache image on the server.

The next chapter discusses tag attributes in more detail.

Variations
KavaChart's tags have a variety of useful attributes and variations that might be
useful in you application.

The chart tags use conventional Java ResourceBundles to achieve localization.
Typically a resource bundle is a set of properties files consisting of property=value
statements. The default ResourceBundle must be located within your
application's CLASSPATH, and must be named
resourceBundleBaseName.properties. Localized resource bundles use the
convention resourceBundleBaseName_en.properties, where "en" is replaced by

Localization

 102

the specific locale ID represented by that bundle. You can localize any property,
including fonts, titles, dataset names, even colors. Non-western locales can be
supported with ResourceBundle classes rather than text files.

A chart tag attribute lets you specify the ResourceBundle base name.

You can also create ResourceBundle instances during the page creation process
and install those resources as an attribute:

getPageContext().setAttribute("resBndl", myResourceBundle);

The chart tag will retrieve this resource bundle and apply it to your charts if you
specify the resourceBundleID like this:

<chart:streamed
 dataProviderID="dataId"
 style="WEB-INF/myStyle.properties"
 chartType="lineApp"
 resourceBundleID="resBndl" />

This approach lets you combine your page localization resources together with
your chart localization resources.

An inner tag (locale) exists to let you test your chart localization approach
without finding a localized client machine.

The chart tags include a number of inner tags that can filter the data or produce
metadata based on your DataProvider. These tags can be used for data
reduction, data analysis, or for creating industry specific chart types, like pareto
charts, histograms, percentage change charts, and so on.

Data Manipulation

The tag collection also includes tags (datasimulation, timedatasimulation) to simulate
incoming data. This lets you proceed with the page design process in the
absence of a working DataProvider class.

Chart tags have 4 variants: streamed, cached, balanced, and applet. The samples
we've shown so far use the "streamed" approach.

Image vs. Applet

The "cached" tag saves an image on your server's filesystem and returns a
reference to that image. This can provide significant optimizations if your
application generates images with high reuse. For example, if your users are
looking at daily inventory levels, your data will change only once per day. A busy
server might benefit by re-using chart images, rather than re-generating the chart
image for each user.

If you’re using a cluster of mirrored servers, the “balanced” tag will distribute
the chart generation request to the first available server. You can also use the
tag attribute “StreamServletName” to direct all chart generation traffic to a
specific server.

 103

Another variant is the "applet" tag. This tag generates an applet definition that
will produce your chart image on a client browser. The primary advantage of
using applets to generate your chart image is that all imaging activity is
distributed to client machines. In the right circumstances, this can save server
bandwidth and even enhance page rendering speed. Applets rely on having
consistent browser configurations, however, and don't give users the same
flexibility to copy and paste images into other applications.

 104

Chapter

7
Chart Tag Details
KavaChart includes a simple taglib implementation to encapsulate the
features of KavaChart’s server objects. Because ChartTags hide the
complexity of managing server chart imaging, they are the preferred
method for building multi-tier JSP applications.

Design Goals
KavaChart's Custom Tag Library consists of a small set of easy to use tags that
hide the complexity of applying data and style information to server-generated
charts. These tags will help you effectively create persistent data stores and style
information to make chart image generation as efficient as possible.

In addition, JSPs that contain these chart tags will be more intuitive and easier to
work with than extensive scriplet or servlet references for non-programmers
and programmers alike. These tags will make your pages more portable and
flexible and will promote re-use of your existing data sources.

This library is comprised of three chart generation tags subclasses of
com.ve.kavachart.servlet.ChartTag) and a few utility tags, described below.

The first step in adding a custom tag to a JSP is an include statement. This
statement provides a unique description of the tag library you intend to use.
KavaChart’s taglib include statement:

Taglib Statement

<%@ taglib uri="http://www.ve.com/kavachart-taglib" prefix="chart" %>

While you can use any prefix you want for your chart tags, we’ll use “chart” for
all our examples here.

The taglib statement assumes that you’ve configured your web.xml file to point
to the “kavachart.tld” tag library descriptor using the URI
“http://www.ve.com/kavachart-taglib”.

 105

The Chart Tags
While your HTML coders may be familiar with applet definitions, this tag
provides you with the opportunity to separate style logic (properties stylesheets)
from your data in a simple tag. Chart data and properties are automatically
populated without cluttering the logic of your JSP source code.

In an ideal situation, data comes to these chart tags via a DataProvider class.
You will have implemented this class to create an Enumeration of Dataset
classes and a unique identifier string (such as a database query string, etc.) to
keep the chart cache logic in order.

Your page designers will use these tags to combine styles (properties files
created with the KavaChart ChartWizard) with your data source. If appropriate,
you can apply locales, resource bundles, and other attributes (described below)
during your page generation process.

This chart tag generates an encoded chart image and writes it to your server's
filesystem. It returns a reference to that image, along with (optionally) an image
map used to create tooltip labels.

Cached ChartTag

Usage:

<chart:cached attr1="value1" attr2="value2" .../>

All this tag's attributes are available for runtime expressions. The tag also has a
number of useful inner tags described later in this document.

This chart tag generates an encoded chart image and saves it to your application
memory. The generated page includes an "IMG" tag that points to a servlet
used to retrieve the image and delete it from memory. This tag will also
(optionally) create an image map used to create tooltip labels to accompany that
image.

Streamed
ChartTag

Usage:

<chart:streamed attr1="value1" attr2="value2" .../>

All this tag's attributes are available for runtime expressions. The tag also has a
number of useful inner tags described later in this document.

This chart tag constructs an IMG tag that points to a servlet, complete with
arguments to produce the chart from that servlet. Since all the chart data is
carried with the servlet command, the servlet URL constructed with this tag can
be rather unwieldy.

Balanced
ChartTag

This tag works best in mirrored server clusters, which provide a pool of
resources for chart creation. Each server must have the same chart style
properties and resource bundles to ensure uniform rendering.

 106

Usage:

<chart:balanced attr1="value1" attr2="value2" .../>

All this tag's attributes are available for runtime expressions. The tag also has a
number of useful inner tags described later in this document.

This tag also includes an “imageType” attribute. If you’re using Flash or SVG
output, this attribute provides some optimizations.

This chart tag generates an applet definition consistent with the server-side
imaging processes. This definition includes data defined by your DataProvider
classes, localization from ResourceBundles, and any other modifications
performed by the other Chart tags.

Applet ChartTag

Usage:

<chart:applet attr1="value1" attr2="value2" .../>

This tag lets you switch from server-side imaging to client-side imaging (via an
applet) with a minimum of effort.

This tag generates an HTML table using your chart data. This definition
includes data defined by your DataProvider classes, localization from
ResourceBundles, titles and labels from your chart’s “style” attribute, and any
other modifications performed by the other Chart tags.

Table ChartTag

Usage:

<chart:table attr1="value1" attr2="value2" .../>

This tag is a useful companion to charts, and is designed to let you re-use your
HTML stylesheets to present chart data in a tabular way.

Special table tag attributes are found below.

ChartTag Attributes
Attributes are added to a ChartTag using a standard syntax. Each attribute is a
string that identifies some aspect of the chart or the imaging process. The
strings can be generated by runtime expressions.

A string value that defines this chart's property sheet. A property sheet is a file
that contains lines in form property=value. These files can be easily
generated with the KavaChart ChartWizard. Because a property file is a simple
ASCII file, you can also edit it with a text editor, using the standard KavaChart
server bean property strings.

Style

 107

http://www.ve.com/editor/

Example:

<chart:cached style="WEB-INF/myChart.properties" />

"true" or "false". By default, the chart's property sheet is loaded into an
application attribute for efficient re-use. If you want changes to the property
sheet to take effect, set "reloadStyle" to "true".

reloadStyle

Example:

<chart:cached style="WEB-INF/niceChart.properties"
reloadStyle="true" />

A string value that describes the KavaChart server chart bean you want to use.
For example, if you specify "lineApp", the tag will use
com.ve.kavachart.servlet.lineApp to create the chart. ChartBean classes that
aren't part of the com.ve.kavachart.servlet package must use a fully qualified
name, such as "kcfinance.ChartBean".

chartType

Example:

<chart:cached chartType="pieApp" />

"true" or "false". By default, this attribute is "true" and the tag creates a link map
with "ALT" text to describe each point. While this is a nice feature for simple
charts, you may want to disable it for charts with a large number of points.

useLinkMap

Example:

<chart:cached chartType="dateLineApp" dataProviderID="myData"
useLinkMap="false" />

An attribute ID for this tag's resource bundle. This permits you to set a resource
bundle attribute at any point in the page generation process and use it to
redefine a chart's labels, titles, etc. You can even redefine the chart's style based
on resource bundle information.

resourceBundleID

Example:

<chart:streamed chartType="pieApp"
resourceBundleID="localizationResources" />

A basename for a resource bundle used by this chart. If you don't use a
common resource bundle for all your page's attributes, you can still localize the
chart automatically using resource bundles.

resourceBundleBa
seName

Typically a resource bundle is a set of properties files consisting of property=value
statements. This file must be located within your application's CLASSPATH,
and must be named with a resourceBundleBaseName.properties. Localized resource

 108

bundles use the convention resourceBundleBaseName_en.properties, where "en" is
replaced by the specific locale ID represented by that bundle.

It’s generally more efficient to put non-Western resources in ResourceBundle
classes.

Resource bundle properties files are loaded and unloaded by the ClassLoader, so
they are cached efficiently in a platform-dependent way. You may need to
restart your server to see changes to your resource bundles take effect.

If your target languages includes non-Western languages, you may need to
create ResourceBundle classes to get the correct character information.

Example:

<chart:cached chartType="pieApp"
resourceBundleBaseName="chartResources" />

(cached chart tag only) Because the cached chart tag must write an image file to
your server's filesystem, it's important to specify where on the filesystem you
wish to save the image.

cacheDirectory

The location specified here is relative to your application context, and defaults to
/images/KavaChartImages.

Example:

<chart:cached chartType="pieApp" cacheDirectory="/images/charts" />

(applet chart tag only) Applets use a CODEBASE attribute to determine
security policies and class file locations. This optional attribute defaults to your
application's root directory.

codebase

You can set this value to point to another directory, or even another server
(which would contain your applet's jar file, image resources, etc.). Since the
chart's data is embedded into the parameters, you can easily host the applet
from another server.

Example:

<chart:applet chartType="columnApp" codebase="/images/charts" />

(applet chart tag only) Applets use an ARCHIVE attribute to point to a jar
archive containing the applet's code resources. This attribute defaults to
KavaChart's applet naming convention (e.g. com.ve.kavachart.applet.lineApp is
contained in a jar archive named lineApp.jar), but you can override this in the
case you have a customized applet.

archive

 109

Example:

<chart:applet chartType="custom.FancyChart" archive="Fancy.jar" />

(streamed and balanced chart tag only) By default the streamed chart tag points
to a servlet named /servlet/com.ve.kavachart.servlet.ChartStream to retrieve its
image bytes. You may wish to obscure this by changing the servlet-mapping
attribute in your web.xml file, and by applying this attribute to your streamed
chart tag.

streamServletName

Example:

<chart:streamed chartType="custom.FancyChart"
streamServletName="StreamingChart.do" />

Table Tag Attributes
(table tag only) true|false. Determines whether data should be displayed with
datasets in rows, or in columns.

rowwise

Example:

<chart:table rowwise="true" dataProviderID=”foo” />

 (table tag only) true|false. Determines whether Y data should be displayed. useYVals

Example:

<chart:table useYVals="true" dataProviderID=”foo” />

 (table tag only) true|false. Determines whether Y2 data should be displayed. useY2Vals

Example:

<chart:table useY2Vals="true" dataProviderID=”foo” />

 (table tag only) true|false. Determines whether X data should be displayed. useXVals

Example:

<chart:table useXVals="true" dataProviderID=”foo” />

 110

 (table tag only) true|false. Determines whether Y3 data should be displayed. useY3Vals

Example:

<chart:table useY3Vals="true" dataProviderID=”foo” />

 (table tag only) true|false. Determines whether data labels should be displayed. useLabelVals

Example:

<chart:table useLabelVals="true" dataProviderID=”foo” />

 (table tag only) true|false. Determines dataset names should be displayed as
row or column headers.

useDatasetName

Example:

<chart:table useDatasetName="true" dataProviderID=”foo” />

 (table tag only) e.g. yyyy-MM-dd. Defines a date format for time oriented chart
X data.

dateFormat

Example:

<chart:table useXVals="true" dateFormat=”yyyy” dataProviderID=”foo” />

 (table tag only) a CSS stylesheet class to be used for this overall table. tableClass

Example:

<chart:table tableClass="charttable" dataProviderID=”foo” />

 (table tag only) a CSS stylesheet class to be used for cells in this table. cellClass

Example:

 111

<chart:table cellClass="chartcells" dataProviderID=”foo” />

 (table tag only) a CSS stylesheet class to be used for column headers in this
table.

columnHeaderClass

Example:

<chart:table columnHeaderClass="ch" dataProviderID=”foo” />

 (table tag only) true|false. A CSS stylesheet class to be used for row headers in
this table.

rowHeaderClass

Example:

<chart:table rowHeaderClass="rh" dataProviderID=”foo” />

 112

Chapter

8
Inner Tags
KavaChart ProServe includes a collection of helper tags that can simplify
otherwise difficult operations. These tags let you override titles, styles,
default locales, create meta-data, and so on.

KavaChart’s tag library includes a number of useful inner tags that supply
debugging or other useful information. These tag statements are used after the
start of the tag and before the end of the tag.

Non-Data Tags
Usage: Param

<chart:param name="titleString" value="hello, world" />

This inner tag overrides properties set in the style properties file and localized
resource bundles. It provides a behavior similar to conventional applet param
tags, but can be set with JSP runtime expressions. This inner tag can be set
multiple times.

name: (required) Name of property to override.

value: (required) The property's new value.

Example:

<chart:streamed chartType="lineApp" style="WEB-
INF/myChart.properties" >

 <chart:param name="backgroundColor" value="orange" />
 <chart:param name="titleString" value="<%=title%>" />
 <chart:param name="yAxisEnd" value="50." />
</chart:streamed>

Usage: Locale

<chart:locale name="localeString" value="BE_fr" />
This inner tag overrides locale settings from your page or application context.
It's useful for testing resource bundles in an ad-hoc way.

 113

localeString: (required) Named locale, using the convention of country_variant

Example:

<chart:streamed chartType="pieApp" style="WEB-INF/ch.props" >
 <chart:locale localeString="ES_es" />
</chart:streamed>

Data Manipulation Tags
This inner tag constrains the data provided by a referenced DataProvider class.
All attributes are settable by runtime expressions, and all attributes are optional.

Datafilter

Usage:

<chart:datafilter startDataset="0" endDataset="7" .../>

dataProviderID: This is original DataProvider class to be filtered. Set this
attribute at any point in your page generation process, and the datafilter tag will
limit the emitted data to the attributes below.

startObservation: This is the index (0 based) for the first point from the chart's
DataProvider to appear on the chart.

endObservation: This is the index for the last point from the chart's
DataProvider to appear on the chart.

startDataset: This is the index for the first Dataset from the chart's
DataProvider to appear on the chart.

endDataset: This is the index for the last Dataset from the chart's
DataProvider to appear on the chart.

Example:

<chart:streamed chartType="columnApp" >
 <chart:datafilter dataProviderID="moneyChartData"
 startObservation="20"
 endObservation="120"
 startDataset="2"
 endDataset="2" />
</chart:streamed>

Usage: Datasimulation

<chart:datasimulation numDatasets="2" numObservations="25" />

 114

This inner tag provides datasets with random numbers to permit your page
designers to proceed with page development in the absence of a working
DataProvider class.

numDatasets: (required) positive integer describing the number of datasets
provided to this chart.

numObservations: (required) positive integer describing the number of points
in each dataset provided to this chart. In essence, this tag installs itself as the
chart tag's DataProvider, regardless of what other attributes may be set.

Example:

<chart:streamed chartType="columnApp" >
 <chart:datasimulation
 numDatasets="3"
 numObservations="10" />
</chart:streamed>

Usage: Timedatasimulation

<chart:timedatasimulation numDatasets="2" numObservations="25" />

This inner tag provides datasets with random numbers to permit your page
designers to proceed with page development in the absence of a working
DataProvider class.

The X values in this DataProvider are timestamps, starting with now, and
increasing by a specified number of days for each observation. The default is
one day per point.

This simulator provides extended data suitable for charts that use
CandlestickDatum, such as candelstick charts, hi-lo-open charts, and so on.

numDatasets: (required) positive integer describing the number of datasets
provided to this chart.

numObservations: (required) positive integer describing the number of points
in each dataset provided to this chart. In essence, this tag installs itself as the
chart tag's DataProvider, regardless of what other attributes may be set.

dayIncrement: (required) positive integer describing the number of days
between each point in this DataProvider's datasets.

Example:

<chart:streamed chartType="candlestickApp" >
 <chart:timedatasimulation
 dayIncrement="7"
 numDatasets="1"

 115

 numObservations="120" />
</chart:streamed>

Usage: dataarithmetic

<chart:dataarithmetic adder="2" multiplier="2.5" />

This inner tag manipulates the data provided by a referenced DataProvider class,
scaling each value by a multiplier, and then adding to each value as specified. All
attributes are settable by runtime expressions, and all attributes

dataProviderID: the original DataProvider to be filtered. (note: you can also
supply a DataProvider by another inner tag, such as when you want to
accumulate data, create a histogram, etc.).

multiplier: This floating point value is used to scale each observation's Y values
(e.g. Y, Y2, Y3, or high/low/open/close). Default multiplier = 1.

adder: This floating point value is added to the result of each multiplication.
Default adder = 0.

Example:

<chart:streamed chartType="columnApp" >
 <chart:dataarithmetic dataProviderID="smogLevels"
 adder="50"
 multiplier="100" />
</chart:streamed>

Usage: datatransposer

<chart:datatransposer … />

This inner tag changes row-wise observations into column-wise observations, or
vice-versa. It's typically used to regroup bars differently. For example, a default
bar (column) chart with multiple datasets creates clusters of bars; the first cluster
is each dataset's first observation, the second cluster is each dataset's second
observation, and so on.

The datatransposer tag would alter that data so that the first cluster consists of
all the first dataset's observations, the second cluster consists of the second
dataset's observations, and so on.

dataProviderID: the original DataProvider to be filtered. (note: you can also
supply a DataProvider by another inner tag, such as when you want to
accumulate data, create a histogram, etc.).

 116

Example:

<chart:streamed chartType="columnApp" >
 <chart:datatransposer dataProviderID="smogLevels"/>
</chart:streamed>

Usage: dataaccumulator

<chart:dataaccumulator dataProviderId=”source1,source2”/>

An inner tag to combine several data sources into a single chart. This tag is
particularly useful when a page needs to display data in a variety of charts. For
example, a page may use one data source for each of two pie charts, and then
combine the data sources into a single bar chart.

dataProviderID: A comma-delimited list of DataProviders to be combined.

Example:

<chart:streamed chartType="columnApp" >
 <chart:dataacumulator
dataProviderID="salesData,expenseData" />
</chart:streamed>

Alternate Example:

<chart:streamed chartType="columnApp" >
 <chart:dataacumulator>
 <datawebservice
serviceURL="http://bigcompany.com:9011/salesXML?now" />
 <datawebservice
serviceURL="http://bigcompany.com:9011/salesXML?then" />
 </chart:dataacumulator>
</chart:streamed>

Usage: datahistogram

<chart:datahistogram … />

An inner tag to generate histogram metadata from incoming data sources. Data
is automatically arranged into a reasonable number of "bins", with ranges used
to label the bins. This tag is typically used with a column or bar chart.

dataProviderID: the original DataProvider to be filtered..

binSize: the number of items to be allocated to each histogram bin.

 117

labelPrecision: A decimal precision to be used for labelling each bin

Example:

<chart:streamed chartType="columnApp" >
 <chart:datahistogram
dataProviderID="dailyTemperatures" />
</chart:streamed>

Usage: datapercentchange

<chart:percentchange … />

An inner tag to generate metadata that describes the percentage change of
incoming data source Y values. This type of chart is typically used with time-
series data to understand how values have changed over time. It is common in
financial services to use this technique to compare two stocks, for example.

dataProviderID: the original DataProvider to be analyzed.

Example:

<chart:streamed chartType="dateLineApp" >
 <chart:datapercentchange dataProviderID="stockPrices" />
</chart:streamed>

Alternate Example:

<chart:streamed chartType="dateLineApp" >
 <chart:datapercentchange>
 <chart:dataaccumulator dataProviderID="IBMstockData,FDXStockData" />
 </chart:datapercentchange>
</chart:streamed>

Usage: dataregressionfeed

<chart:dataregressionfeed … />

Linear regression is typically used to understand correlation between two
variables. In practice, these variables often exist as the dependent (Y) values of
two different datasets. This tag uses Y values from two datasets to create X and
Y metadata for an output dataset. The output data is then directed to a
regressionApp chart or scatter plot to visualize the correlation between these
variables.

dataProviderID: the original data to be analyzed.

 118

Example:

<chart:streamed chartType="regressionApp" >
 <chart:dataregressionfeed
dataProviderID="windAndTemperatureData" />
</chart:streamed>

Alternate Example:

<chart:streamed chartType="regressionApp" >
 <chart:dataregressionfeed>
 <chart:dataaccumulator
dataProviderID="windData,temperatureData" />
 </chart:dataregressionfeed>
</chart:streamed>

Usage: datasorter

<chart:datasorter … />

A tag to sort incoming data sources. Combined with a column chart, this can
turn data into a Pareto analysis chart. You can also use this chart to visually
understand other aspects of incoming data sources.

dataProviderID: the original data to be sorted.

sortBy: X|Y|Y2|Y3|label. Defaults to "Y".

Example:

<chart:streamed chartType="columnApp" >
 <chart:datasorter dataProviderID="salaryData" />
</chart:streamed>

Alternate Example:

<chart:streamed chartType="regressionApp" >
 <chart:dataregressionfeed>
 <chart:dataaccumulator
dataProviderID="windData,temperatureData" />
 </chart:dataregressionfeed>
</chart:streamed>

 119

DataProvider Interface
One of the keys to implementing an efficient and flexible architecture using
KavaChart ChartTags is creating DataProvider classes to supply data to
ChartTags.

Typically, you will implement DataProvider in a class that contains data you’ve
retrieved from a database to create charts, tables, and other data representations.
Each DataProvider supplies a specific view on your data. Page-scope
DataProviders are used for things like individual financial data, which change
with each page view. Application scope DataProviders can be created for data
that doesn’t vary by page view.

Put your DataProvider into a page, application or other scoped attribute, and
provide a reference to that class’s ID in your ChartTag dataProviderID attribute.
The ChartTag will use the DataProvider during the chart construction process
to supply that chart’s Dataset information. A “UniqueIdentifier” makes sure
charts with identical styles but different data aren’t confused by the caching
mechanisms.

public Interface com.ve.kavachart.utility.DataProvider {
 /*
 ** Returns an Enumeration of Dataset classes.
 */
 public Enumeration getDatasets();
 /*
 ** Returns a String that uniquely identifies this data.

 ** Needed to make chart image caching work properly.
** Otherwise unnecessary.

 */
 public String getUniqueIdentifier();
}

Since a DataProvider returns an Enumeration of Dataset classes, it’s important
to be able to construct these. Fortunately, this class has a range of convenience
constructors that make it quite easy to use.

Important Dataset
Constructors and
Methods

The Dataset class is found in the com.ve.kavachart.chart package. In the
constructors below, set “Globals” to “null”.

public Dataset();

public Dataset(String name,

double[] xArray,
double[] yArray,
double[] y2Array,
double[] y3Array,
int seriesNumber,
Globals g);

 120

public Dataset(String name,
 double[] xArray,
 double[] yArray,
 String[] labels,
 Int seriesNumber,
 Globals g);

public Dataset(String name,

double[] xArray,
double[] yArray,
Globals g);

public Dataset(String name,
 double yArray[],
 int setNumber,
 Globals g);

If you’re using time oriented charts, time values should be the underlying values
(milliseconds since epoch) used by java.util.Date and java.sql.Date. Generally,
these are “X” values, and can be obtained by using Date.getTime().

Dataset also has a number of useful methods that make it easy to create
meaningful data:

public void addDatum(Datum d);

public void addPoint(double x, double y, String label);

A Datum class describes an individual observation: a point on a line, a bar in a
bar chart, etc. Datum is also found in the com.ve.kavachart.chart package, and
has easy to use constructors and methods:

public Datum(double x, double y, Globals g);

public Datum(int whichPoint,

double y,
String label,
Globals g);

public Datum(double dataX,
 double dataY,
 double dataZ,
 String str,
 int element,
 Globals g);

Datum methods let you set internal values:

public void setX(double x);
public void setY(double y);
public void setY2(double y2);
public void setY3(double y3);
public void setLabel(String s);

 121

A complete DataProvider is installed in a chart bean using the
“setDataProvider” method. In a chart tag, a DataProvider is installed into a
server attribute (application, page, or session scope), and the attribute name is
passed into the tag as the “dataProviderID”.

Here’s a simple, complete DataProvider:

import java.util.*;
import com.ve.kavachart.chart.*;
public void MyDataProvider implements DataProvider{
 public Enumeration getDatasets(){
 Dataset d = new Dataset();
 double yVals = new double[20];
 for(int i=0;i<yVals.length;i++){
 d.addPoint(i, y, null);
 }
 d.setName(“Fake Data!”);
 ArrayList al = new ArrayList();
 al.add(d);
 return Collections.enumeration(al);
 }
 public String getUniqueIdentifier(){
 return (new Date()).toString();
 }
}

Note that this code returns the value of “Date” to make sure any cached
versions of this chart are not used. Now, to install and use this DataProvider in
a JSP scriptlet or a servlet, we’d do this:

Bean chart = new columnApp(myStyleProperties);
chart.setDataProvider(new MyDataProvider());
String filename = chart.getFileName();

In a chart tag, we would do something like this:

<%pageContext.setAttribute(“data”, new MyDataProvider());%>
<chart:streamed chartType=columnApp dataProviderID=”data” />

A DataProvider gives you much more flexibility in structuring your pages and
maintaining your data. Importantly, it also helps you test your data inputs
outside an HTTP context.

Within a chart tag, DataProviders can also be filtered, sorted, combined with
other sources, etc. using an intuitive set of tags, discussed in another chapter.

Consult the com.ve.kavachart.chart.Dataset documentation for more
information on constructing Dataset classes. Convenient constructor signatures
are available for most situations.

 122

Web.xml
Your server recognizes a tag library implementation by references to it in your
web.xml file. The KavaChart tag library descriptor is a file named “kavachart-
taglib.tld” referenced in this file. Consult your server documentation for specific
information on web.xml usage, but generally, you’ll install the KavaChart
ChartTags in these steps:

 Add "kcServlet.jar" to your CLASSPATH (usually WEB-INF/lib)

 Integrate the sample WEB-INF/web.xml (from kavachart.war) into
your own. In particular, you'll need the “ChartStream” servlet definition
and mapping for cached charts, and you'll need the taglib reference.
Remember that XML entries are order-dependent, so your <servlet-
mapping>, etc. tags must be placed in the right order throughout your
web.xml file.

Add kavachart-taglib.tld (the taglib descriptor) to the location specified in your
web.xml file.

 123

Appendix

A
Headless Server
Operation
The Java graphics environment uses native code that varies from one
operating system to the next. Unix servers that lack an X Windows
console and have a version of Java lower than 1.4 require special
installation steps to generate images.

To generate an image, KavaChart employs various classes in Java's AWT
package to create images and fonts. Java's AWT package maps Java abstractions
into specific operating system methods by using something called peer classes.
These peer classes are usually created using native code (hence "native peer
methods") for performance purposes. Windows implementations use code that
calls the Windows GDI, Macintosh implementations the Mac Toolbox, and
Unix implementations use Xlib

Note:

If you’re using JDK 1.4 or newer with a Unix server, set the
System property “java.awt.headless” to “true” to make sure you
don’t need any special system resources to create graphics. You
can set this in your server startup script (add “-
Djava.awt.headless=true” to the command line), or as a temporary
workaround, you can add the line
“System.getProperties().setProperty(‘java.awt.headless’, ‘true’);” to
a JSP.

This generally requires actual display hardware of some sort on the server, even
though nothing will actually appear on the screen. For Windows and NT
servers, this isn't a problem. If you’re running a version of Java earlier than 1.4
with a Unix server, however, your server must have access to an X-windows
display. The display needn't be local (although performance may degrade if it's
not), and it can even be a "virtual" display, such as the xvfb (X Windows Virtual

 124

Framebuffer), which can be freely downloaded as an RPM from most Linux
sites.

Links to download various binary versions of xvfb can be found at the Visual
Engineering web site at :

http://www.ve.com/kavachart/solutions/xwindows.html.

Once you have created an X windows environment, there are some additional
issues you may need to address:

 When making a connection to an X server, one specifies a display
number and a screen number, in addition to the hostname of the server.
The default connection is usually "localhost:0.0", which means "the X
server running on localhost, for display 0 and screen 0". This default is
usually changed for a particular shell by modifying the environment
variable "DISPLAY". For example, "setenv DISPLAY goldfish:1.0"
would change the default X server to the one running on the machine
"goldfish" for display 1, screen 0. Most X applications (also called
"client processes") also support a -display flag, which lets you override
the DISPLAY environment directly.

 X Servers have a modicum of security built in, so that "foreign" clients
can't connect to an X server unless permission is granted, using the xhost
program. Consult your system's documentation for xhost specifics, but
usually "xhost +" will instruct the default X server to permit
connections from any other host or process.

 Usually, xvfb is started as the server for DISPLAY localhost:1.0.

 Some X servers default to a 256 color PseudoColor Visual model,
which may yield poor color management when generating images.

 You can set up your X windows (and xvfb) configuration to be set at
startup by modifying the appropriate files in /etc/rc*. Systems vary in
startup configuration, so leave this task to your system administrator.

 If you're using your local display's X Server to make sure everything's
working, and then log out, you'll be unable to connect to that server
after logging out.

Another way to provide a graphics environment to your Unix server is to use
PJAToolkit, from ETEKS.com. This freely available download provides a pure
Java implementation of the graphics support classes normally provided by
native peers. The ETEKS web site provides download and installation
instructions in the French and English languages. Our users report that the
performance of this tool is comparable to that of native classes in most
environments.

 125

http://www.ve.com/kavachart/solutions/xwindows.html

JDK 1.4 implements a "Headless Support" option along with new
GraphicsEnvironment methods, and can run without the X windows
requirement. To use this option , the following property may be specified at
the java command line:

 -Djava.awt.headless=true

You can also specify this property by using environment variables or
configuration files. Some application servers may also provide administration
tools to set this property.

If the “java.awt.headless” property is not set to true, the server will throw a
“HeadlessException”, new to JDK 1.4.

See Sun’s online documentation for more information about headless server
operation.

 126

Appendix

B
ColdFusion MX Server
Setup
KavaChart ProServe makes a powerful companion to ColdFusion and
FlashMX, but this server requires some special setup, and ColdFusion
tags are a little different from onventional usage.

The ColdFusion MX server acts as a J2EE container for the ColdFusion
application, but it doesn't support easy drop-in of .war or .ear files to set up new
applications. To integrate KavaChart with this server, do the following steps:

Installation and Setup
 Extract “kavachart.war” into a temporary directory to get the necessary

parts.

 In that directory, you’ll find a WEB-INF folder with many of the
necessary pieces: integrate WEB-INF/web.xml with the ColdFusion
WEB-INF/web.xml. To do this, make sure you keep the tags all
together – ordering matters (add ours to the end of the default), and
keep the tags together, and so on. Make sure you include the
KavaChart taglib section.

 Copy WEB-INF/lib/kcServlet.jar into the ColdFusion MX WEB-
INF/lib directory.

 Copy WEB-INF/jsp/kavachart-taglib.tld into the ColdFusion MX
WEB-INF directory.

 To get the KavaChart samples working, copy the WEB-
INF/classes/examples folder, with its contents to the ColdFusion
WEB-INF/classes folder.

 Copy WEB-INF/paramchart.properties into the ColdFusion WEB-
INF folder.

 127

 Copy tag-samples/simplechart.jsp into wwwroot. Modify this file so
the “taglib uri” statement points to the KavaChart taglib definition:
“/WEB-INF/kavachart-taglib.tld”.

Run The Example
Now you should be able to run this example and produce graphical output.
(http://localhost:8080/simplechart.jsp). In summary, we did the following: a)
added web.xml and kavachart-taglib.tld information, b) provided a stylesheet for
simplechart.jsp, and b) made sure simplechart.jsp points to the correct tag library
definition.

This sample uses the KavaChart “streamed” tag, which is appropriate for most
installations. If you prefer to use the “cached” tag, you’ll also need to create an
image cache directory. For the samples, create
“wwwroot/images/KavaChartImages”.

When copying other examples from the kavachart.war contents, make sure you
check the “taglib uri”. JSP scriptlet examples should also work, although these
are more difficult to combine with CF tags.

The first step to using KavaChart tags is to import the tag library descriptor: Integrating
ColdFusion Data
Sources With
KavaChart
ProServe

<cfimport taglib-"/WEB-INF/kavachart-taglib.tld"
prefix="chart">

This tells ColdFusion that all tags with a prefix of "chart" will be processed by
KavaChart, after ColdFusion has processed CF data tags.

KavaChart's tag library supports a "param" syntax nearly identical to KavaChart
applets. Although it's more efficient and neater to place your persistent style
attributes (background colors, margin sizes, etc.) into a properties file referenced
by the tag "style" attribute, you can set any param/property like this:

<chart:param name="dataset0yValues" value="123,234,345" />

Dynamic values like this are generally represented as either strings or comma -
separated values. A chart that uses ColdFusion to populate these values might
look like this:

<chart:streamed
 style="/WEB-INF/paramchart.properties"
 chartType="barApp" >

 <cfoutput>
 <chart:param name="dataset0yValues" value="#ValueList(get_depts_by_year.dptCount)" />
 <chart:param name="dataset0Labels" value="#ValueList(get_depts_by_year.dptName") />
 <chart:param name="dataset0Labels" value="#ValueList(get_depts_by_year.year)" />
 </cfoutput>

</chart:streamed>

 128

http://localhost:8080/simplechart.jsp

In this example, "get_depts_by_year" is the name of a CFQUERY defined
elsewhere on the page. Like "simplechart.jsp", this .cfm page uses
"paramchart.properties" to define the basic look of the chart and it uses a bar
chart as the visual representation. The result of this output will be an image in
PNG (the imageType param in paramchart.properties), placed in the page in the
overall context of this chart tag.

Other important tag options are alternate image types (flash, svg, jpeg, etc.), the
"reloadStyle" attribute, which lets you modify the style properties file while
you're developing, and "cached" and "balanced" tags, which behave the same
way, but implement automatic server-side caching and load balancing,
respectively.

 129

Appendix

C
DataProvider GUIs
One of the most effective ways to use KavaChart is to combine your own
DataProvider classes with the Chart Wizard using a graphical user
interface.

DataProviders in the Wizard
When run as a Java WebStart application, the Chart Wizard lets you set
CLASSPATHs from URLs or your local filesystem, and to use DataProvider
classes in that CLASSPATH for chart data.

When you load a zip file, jar file, or identify a directory at the top of a class
hierarchy, the wizard looks for a file named “DataProviders.list”. This is an

 131

ASCII file containing a list of fully qualified DataProvider class names. The list
is used to populate the ComboList at the bottom of this editor.

After selecting your DataProvider from the CoomboList (or adding it to the list
manually), you can run the DataProvider class by selecting “Data Provider
Details”. The “Update” button at the bottom of this page causes the wizard to
run your DataProviders “getDatasets()” method to replace the existing chart
data.

If your DataProvider is also a subclass of javax.swing.Jpanel, you can also
implement your own graphical user interface, which is displayed by the wizard
when you select “Data Provider Details”. Here’s an example, provided in the
sample classes at http://www.kavachart/com/sample_classes/examples.zip:

Note this is the default sample URL CLASSPATH in the wizard. It’s worth
viewing from time to time, since we supply new examples periodically.

Although you can’t see it in this sample, there’s an “Update” button at the
bottom of the panel. This is supplied by the editor, and will trigger data
acquisition through the DataProvider.

 132

http://www.kavachart/com/sample_classes/examples.zip

Appendix

D
Installing A License
Key
This section describes how to make KavaChart ProServe operate in fully
licensed mode.

KavaChart ProServe operates in “demo mode” until you install a license key.
This mode draws information about Visual Engineering over your chart images,
and modifies some hyperlinks to point to the ve.com web site.

Once you’ve purchased a KavaChart license, you’ll receive a licence key file.
This binary file can be downloaded from our web site (www.ve.com) by going
to the “MyKavaChart” section. License keys are available that will work with a
server on any IP address (distribution license key), or that will work only with
specific IP addresses (deployment license key). An incorrect deployment key
will cause KavaChart ProServe to operate in demo mode.

Obtain a license
key

Installing a license key is a simple matter of placing the file into your
CLASSPATH. Most servers have multiple locations that are included in a web
application’s CLASSPATH. For example, on Apache Tomcat, you can place
this file into your application’s WEB-INF/classes directory, or you can put it
into the “shared/classes” directory.

Put the key in your
CLASSPATH

This file is loaded by the Java ClassLoader as a resource, so it can be handled
like any other resource.

 133

http://www.ve.com/

Index
accumulateProperty, 45 Headless, 124

HeadlessException, 126 Acme, 95
antialiasOn, 48 histogram, 117

HTML, 20 applet, 103
HTTP, 21 arithmetic, 116
hyperlink, 34, 37 ASP, 26, 27, 28, 29, 45
Hyperlink, 48 Axis, 10, 11, 62, 63, 64, 65, 80, 87, 89, 90
Hyperlinks, 33, 37 Background, 12
Image Cache, 18, 28, 30 Bar charts, 76
Image Streams, 16 BMP, 95
imagemap, 33, 34, 35, 36, 37, 38, 46 Bubble Charts, 80
imagemaps, 4, 19, 33, 34, 36, 37, 48 byteStream, 26, 30, 47
imageType, 46 CacheCleaner, 18, 30

cacheCleanerDirectory, 48 JavaScript, 34, 36
cacheCleanerExpirationTime, 48 JDBC, 54
cacheCleanerInterval, 48 JPEG, 44, 93

JSP, 14, 19, 20, 21, 22, 23, 25, 26, 27, 29, 35, 45,
50, 51, 54, 90

ChartServlet, 39
ChartTag, 19, 23, 24, 34, 91, 105, 106, 107, 120

LabelAxis, 10 CODEBASE, 58
Legend, 13 ColdFusion, 127
linear regression, 73 Color, 57, 59, 66
locale, 61, 65 Data, 13
mapName, 37 database, 17
Pareto, 119 DataProvider, 24, 86, 98, 100, 103, 106, 107,

114, 115, 120, 131 Pie Charts, 76
PJAToolkit, 125 DataRepresentation, 12
Plotarea, 10, 11 Dataset, 10, 14, 52, 120
PNG, 94 Date Formats, 53
PostScript, 95 DateAxis, 10
Properties, 90 Datum, 14

debug, 47 Radar, 80
regression, 119 Discontinuities, 52
ResourceBundle, 108 DISPLAY, 125
Scatter Charts, 71 Enterprise Java Beans, 3
Server Objects, 15 ETEKS, 125
servlet, 16, 19, 20, 25, 26, 27, 28, 30, 31, 39, 40,

43, 45, 46, 47, 49, 50, 51, 52, 61, 65, 71, 73,
74, 75, 76, 79, 80, 87, 90, 91

external properties file, 90
fileName, 30
financial data, 85

Servlet, 24 Flash, 94
setProperty, 21, 45 Font, 59
setUserImagingCodec, 46 getFilename, 21
simulation, 115 getFileName, 44
sort, 119 getImageBytes, 44
Speedos, 79 getLinkMap, 44, 46

getParameter, 45 SVG, 94
getProperty, 45 Table, 107, 110

Time, 53 getRealPath, 29
tooltip, 19, 33, 34, 35, 36, 37, 39, 50 GIF, 46, 93, 94, 95
Tooltip, 48 GraphicsEnvironment, 126

 135

transpose, 116
Unix, 124
URL, 20, 22, 29, 38, 39, 58, 60, 61, 66, 87
useCache, 26, 30, 47
useCacheCleaner, 48

watermark, 80
web.xml, 96, 123
Wizard, 96
writeDirectory, 22, 29, 30, 47
xvfb, 125

 136

	What is KavaChart?
	Ways to use KavaChart
	KavaChart on the Server
	The KavaChart Wizard

	Getting Started
	Sample Code
	Chart Parts
	X Axis and Y Axis
	Plotarea
	Background
	DataRepresentation
	Legend

	Programmer Overview
	Data

	Benefits and Drawbacks to Using Server Objects
	Complete Control
	Images Can Be Saved
	“Local” Data Stores
	External Requirements
	Centralized Imaging Load

	Servers and Image Streams
	Most server transactions send a single content type
	Server-side image cache

	Various Imaging Approaches Using KavaChart
	KavaChart Server Objects and JSP Scriptlets
	JSPs Emit Text, Not Graphics

	KavaChart ChartTags and JSPs
	ChartTags Hide Complexity

	Using a Servlet for Image Content
	Servlets Can Generate Image Data Directly
	The useCache Property
	The byteStream Property

	KavaChart Server Objects and ASP
	KavaChart’s Image Cache
	Unique Names for Unique Charts
	Setting “writeDirectory”
	Using CacheCleaner

	Tooltips and Hyperlinks
	Tooltip Labels in JavaScript
	Hyperlinks

	Using ChartServlet
	ChartServlet Properties

	Server Object Methods
	Image Management Properties
	Tooltip and Hyperlink Properties
	Data Related Properties
	Supplying Data with Properties
	Dataset Properties
	Discontinuities
	Time oriented charts
	Managing Date Formats

	Using DataProviders
	Important Dataset Constructors and Methods

	Color and Style Properties
	General Color and Font Properties
	Axis Related Properties
	Date and Time Axis Properties
	Dataset Related Color and Style Parameters
	Area Charts
	Line and Scatter Charts
	Bar and Column Charts
	Pie Charts
	Combinations: Bar-Area Chart
	Combinations: Bar-Line Chart
	Speedos
	Radar Charts
	Bubble Charts
	Gantt Charts
	Sectormap Charts
	Combinations: Bar-Area Chart
	Combinations: Bar-Line Chart
	Candlestick and OHLC Charts
	Stick Charts
	Combination Charts
	Combinations: Multiple Axis Charts

	Using a Properties Object or File
	Property Files
	Constructor Properties
	GIF
	JPEG
	PNG
	Flash
	SVG
	BMP
	Other Formats
	External Formats: PostScript, GIF Transparency

	Setup
	Integrate Taglib Descriptor and web.xml

	Create a Chart Style
	Use the ChartWizard

	Create a DataProvider
	Install your DataProvider

	Edit Your JSP
	Add a Chart Tag

	Variations
	Localization
	Data Manipulation
	Image vs. Applet

	Design Goals
	Taglib Statement

	The Chart Tags
	Cached ChartTag
	Streamed ChartTag
	Balanced ChartTag
	Applet ChartTag
	Table ChartTag

	ChartTag Attributes
	Style
	reloadStyle
	chartType
	useLinkMap
	resourceBundleID
	resourceBundleBaseName
	cacheDirectory
	codebase
	archive
	streamServletName

	Table Tag Attributes
	rowwise
	useYVals
	useY2Vals
	useXVals
	useY3Vals
	useLabelVals
	useDatasetName
	dateFormat
	tableClass
	cellClass
	columnHeaderClass
	rowHeaderClass

	Non-Data Tags
	Param
	Locale

	Data Manipulation Tags
	Datafilter
	Datasimulation
	Timedatasimulation
	dataarithmetic
	datatransposer
	dataaccumulator
	datahistogram
	datapercentchange
	dataregressionfeed
	datasorter

	DataProvider Interface
	Important Dataset Constructors and Methods

	Web.xml
	Installation and Setup
	Run The Example
	Integrating ColdFusion Data Sources With KavaChart ProServe

	DataProviders in the Wizard
	Obtain a license key
	Put the key in your CLASSPATH
	Run the Examples

