
VISUAL ENGINEERING
KavaChart Developer Documentation

KavaChart
AlaCarte

User Guide

V E R S I O N 5 . 0

KavaChart AlaCarte User Guide

 2002, 2003, 2004 Visual Engineering, Inc.
164 Main Street • Second Floor • Los Altos, CA 94022

Phone 650.949.5410 • Fax 650.949.5578

Table of Contents
Date and Time Axis Parameters34 KAVACHART INTRODUCTION 3
Dataset Related Color and Style Parameters.......35
Hyperlinks..37 What is KavaChart?..3

Ways to use KavaChart ..3 THE APPLETS AND THEIR PARAMETERS 38
KavaChart on the Client: Applets3
The KavaChart Wizard..4

Basic Applet Collection ...38
Area Charts ..38
Line and Scatter Charts..39 QUICK START GUIDE..................................... 5
Bar and Column Charts41
Pie Charts ...43

Getting Started...5 Combinations: Bar-Area Chart............................44
Combinations: Bar-Line Chart45

Creating Dynamic Data...7 Interactive Applets: spinningPie..........................46
Dynamic Data and Chart Intelligence7 Interactive Applets: zoomLine46
Using the Chart Wizard ...7 Interactive Applets: scrollingLine46

Timeseries Applet Collection................................47 TERMINOLOGY OVERVIEW 11 Date Area Charts..47
Date Line Charts ..47

Chart Parts ...12 Strip Charts ..48
X Axis and Y Axis...12 Time-oriented Bar Charts48
Plotarea ..13 Multiple Axis Charts..49
Background..14 scrollingDateLine ..51
DataRepresentation..14
Legend ...15 Specialty Applet Collection...................................51

Speedos ..51
Kiviat Diagrams, Radar Plots, Polar Charts52 KAVACHART APPLET DETAILS 16 Bubble Charts ..52
Gantt Charts ...53

What’s an Applet? ...16 Multi-Axis Charts ..54
Sectormap Charts...56

Why Applets? ...16
Finance Applet Collection.....................................57

Candlestick and OHLC Charts57 Anatomy of an applet definition...........................17
Stick Charts..58 Using CODEBASE..18
Combination Charts ...59
Hi-Lo Bar Charts ...59 KavaChart Applets and Data19

Dataset Parameters ..22
Time oriented charts ..22 OBTAINING AND USING YOUR LICENSE

KEY... 61 Managing Date Formats22

URL Datasets ...24 Obtaining a License Key61 URL Dataset Parameters25
Special time oriented URL parameters26

Using a License Key...61 Discontinuities ...26
CODEBASE, again ...26

INDEX ... 63 Color and Style Parameters..................................27
General Color and Font Parameters28
Axis Related Parameters......................................31

Chapter

1
KavaChart Introduction
This chapter provides a broad overview of some of the ways
you might use KavaChart to put charts into your
application.

What is KavaChart?
KavaChart is a collection of tools for turning numbers into charts. Given one
or more series of numbers, KavaChart can create a variety of common charts to
help you absorb and interpret the information. KavaChart tools provide
robust, well tested components that let software or web site developers translate
numbers to graphics with minimal effort.

KavaChart is implemented in pure Java so that it can be used on virtually any
computer operating system, ranging from mainframes to PDAs. The charting
tools can be used from within HTML pages, Java applications, and various
server technologies.

Java programming expertise is not required to use KavaChart, but we assume
that our users will have some familiarity with one or more relevant technologies,
such as HTML, applets, server scripting, servlets, database access, or object
oriented programming. KavaChart is a complement to any of these skills.

Ways to use KavaChart
KavaChart can be used in a variety of ways. Many HTML pages include
KavaChart applets that adjust automatically with dynamic data. Other web sites
prefer using KavaChart to generate chart images on the server. KavaChart can
be used to add charts to Java application programs. KavaChart can also be
embedded within other tools, such as EJBs (Enterprise Java Beans) to add
charting functions.

Although some Java applets are designed to create complete software
application functionality, KavaChart applets are designed to behave more like an
easy-to-use extension to HTML designed to produce data driven graphics.

KavaChart on the
Client: Applets

 3

KavaChart applets behave like an intelligent image tag that responds to PARAM
tags to define the look and data inputs for its graphical output.

Unlike some other charting products, KavaChart applets contain one chart type
per applet, and no significant user interface. This means that each applet will
download fast and start quick. In some cases, loading a KavaChart applet is
faster than downloading an image.

Applets can also contain hyperlinks that will permit you to drill down to more
detailed data or to open a reference page. You can have as many unique
hyperlinks as you have data points. Hyperlinks can also be used to trigger
JavaScript functions on a page.

KavaChart also implements tooltip labels within the applets, so that pointing to
a specific bar (or pie slice, or line vertex, or marker, or...) will display the
underlying data values and labels.

A chart applet that always shows the same values isn't very interesting, so most
KavaChart applet definitions are created with some kind of server scripting
language. Since KavaChart's applet data can be defined with simple textual
param values, it's a simple matter to create a script that generates these values.
When the values change, the chart will change, so building a dynamic chart is as
easy as writing a script that generates dynamic page content. And since the
values are all simple text, you can use any scripting language; perl, php, servlets,
ASP, JSP, your choice.

In addition to params, KavaChart applets can open a URL to retrieve data.
They can also poll a URL periodically to see if the data has changed. If the data
has changed, the chart will automatically redraw to display the new data.

Enterprise Edition users can also use KavaChart's libraries to build your own
custom applets.

KavaChart AlaCarte licensees can design charts by hand, using a text editor and
documentation about KavaChart’s applet parameters. It’s a lot easier, though,
to design your charts visually, using the KavaChart Wizard. This on-line tool
provides a graphical interface for designing chart appearance, and the ability to
simulate various kinds of data sources with your chart designs. The Wizard
produces complete output templates for a variety of server technologies and
data sources.

The KavaChart
Wizard

The KavaChart Wizard is on on-line tool available to all KavaChart users, with
enhanced capabilities available to subscribers.

 4

Chapter

2
Quick Start Guide
If you’re the kind of person that wants to see results ASAP, follow this
quick start guide to make your KavaChart applets productive right
away. You can then poke around with the examples and get an overall
understanding of KavaChart AlaCarte, and then come back to this
guide for a more detailed reference.

The first step in using KavaChart AlaCarte is to create a web page with an
applet definition. Generally it’s easier to start with some kind of fixed data in
parameters, which you can then turn into live scripted data once you get the
applet definiton the way you want it.

Getting Started
An applet definiton consists of a few simple pieces: an APPLET tag, which tells
your browser to use Java to interpret the applet information, a CODE attribute,
which tells Java which applet you want to use, and ARCHIVE attribute, which
tells Java where to find that applet, and WIDTH and HEIGHT attributes,
which describe how the applet fits into a page. Here’s a simple example:

<APPLET CODE=”com.ve.kavachart.applet.barApp”
 ARCHIVE=”applet.barApp.jar”
 WIDTH=”300” HEIGHT=”150”>
</APPLET>

This definition produces a simple chart that looks like this:

 5

Let's break down the applet tag, and see what the constituent parts are:

1) <APPLET> this tells the browser we want to use Java (either the plug-in or
Microsoft’s Java for older Windows installations) to interpret the rest of the tag.

2) CODE=”com.ve.kavachart.applet.columnApp” tells Java that
the applet we want to use is named “columnApp”, and that it’s part of
KavaChart AlaCarte. All KavaChart applets use the prefix of
“com.ve.kavachart.applet”, following Java conventions.

3) ARCHIVE=”applet.columnApp.jar” tells Java that the applet we’re
looking for is contained in the Java Archive file named “applet.columnApp.jar”,
which is assumed to be in the same directory as the HTML file, unless you
specify the archive as a URL or use a CODEBASE attribute (more about this in
the chapters below).

4) WIDTH=”300” HEIGHT=”150” tells the browser that we want this
chart to be 300 x 150 pixels in size. That will be the size of the chart image we
specified.

Although this chart is reasonably attractive, it’s also not vey useful. It doesn’t
display any meaningful data. To do this, we’d add a PARAM that describes
some data. Our new applet definiton:

<APPLET CODE=”com.ve.kavachart.applet.barApp”
 ARCHIVE=”applet.barApp.jar”
 WIDTH=”300” HEIGHT=”150”>
 <PARAM NAME=”dataset0yValues” value=”150,160,200”>
</APPLET>

And our new chart:

 6

The new chart definition uses actual data from our PARAM tag. We could also
use PARAM tags to define multiple datasets, titles, colors, axis scaling, etc., etc.
KavaChart supports an extensive range of PARAM definitions that can be
edited manually with a text editor, or by using the on-line Chart Wizard.

Creating Dynamic Data
Although there are lots of ways to add data to a KavaChart AlaCarte applet, the
easiest method usually involves using some kind of scripting language, like Perl,
PHP, VBScript, JSP, Python, etc. to create PARAM values that are tied to your
data. For example, our previous chart definition might have looked like this:

<APPLET CODE=”com.ve.kavachart.applet.barApp”
 ARCHIVE=”applet.barApp.jar”
 WIDTH=”300” HEIGHT=”150”>
 <PARAM NAME=”dataset0yValues” value=”<?=$my_database_values?>”>
</APPLET>

If we use PHP to create a variable named $my_database_values, then
this variable would be processed by PHP while the overall page was created and
sent to the browser. Assuming PHP set this variable to “150,160,200”, the
output of this applet definition would be identical to our previous example.

The beauty of KavaChart AlaCarte, combined with a scripting language, is that
KavaChart takes care of managing data display, axis scaling, and chart layout, so
that your chart will automatically display an accurate representation of the data
you provide. All you really need to do is provide the data and KavaChart does
the rest.

Dynamic Data and
Chart Intelligence

Using the Chart
Wizard

 7

Although KavaChart provides nice looking output by default for most common
chart types, the applets also have many features to help you communicate your
data better. You can find out about these features by browsing through the
examples or the documentation, or you can use the KavaChart wizard, available
at the ve.com web site.

The Wizard generally provides the most productive environment for editing
yoru chart definitions. Using the wizard, you can define things like axis scaling
behavior, annotation and titling locations, reference lines, etc. using an
interactive tool instead of by experimentation. In addition, the wizard will
produce output templates that include sample data sources you can modify to
suit your own data inputs.

 9

Chapter Chapter

3
Terminology Overview
It’s helpful to understand KavaChart’s terminology. Here’s a visual description
of some of the most basic terms:

KavaChart charts use a standard set of graphical and non-graphical components
to do the work of representing your data. To get the most out of your charts, it's
helpful to understand how KavaChart refers to these components and how they
fit together.

Background

Plotarea

X Axis

Y Axis

Data Representation
(Bar, line, etc.)

 11

Chart Parts

X Axis and Y Axis

X Axis

Y Axis

Y Axis

X Axis

Axes can occur on the left, right, top or bottom of a Plotarea. A Y axis scales for
Dataset Y values. Normally, these are represented vertically, and the Y axis is
vertical. Horizontal Bar charts, Speedo charts, and Pie charts are exceptions.

X axes scale for Dataset X values. For some charts, such as a Column chart or a
Stacked Column chart, the X axis distributes the data evenly along the X axis,
regardless of the Dataset's X values.

Several different types of Axes exist in KavaChart charts. A basic Axis
automatically creates an aesthetically pleasing scale, arranged in even increments.
An Axis can also scale logarithmically, which is appropriate for data with
extremely wide variation. Some specialized axes, such as the DateAxis, are
designed to handle specialized data. DateAxis arranges increments in months,
weeks, or some other appropriate time value. A LabelAxis, such as those used
for Column charts, will use user-defined labels. If no user-defined labels are
present, the axis will try to determine appropriate labels.

 12

Axes contain a number of elements that can be visible or not visible. These
include the axis line, tick marks, minor tick marks, an axis title, labels, and grid
lines. You can define the color of these elements, and in the case of labels and
titles, the font. Labels can also use a number or date format of your choosing.
By default, time and numeric labels are automatically localized for various
locales.

Axes can be automatically scaled, semi-automatically scaled (you set the start and
end, and let the axis determine labelling and increments), or manually scaled. A
non auto-scaled axis requires you to set tick, grid, label, and minor tick counts as
well as the axis start and end values.

Plotarea

Plotarea

A Plotarea is the region bounded by an X and a Y Axis, which contains a
DataRepresentation (such as a Line, Bar, Area, etc.). A Plotarea has a size and
location determined by the upper right and lower left corners. The values that
define the Plotarea size and location are percentages, relative to the overall chart.
For example, an upper right corner value of (0.75, 0.75) means that the top of
the Plotarea will be at 75% of the height, and the right side of the Plotarea will
be at 75% of the width.

A Plotarea also has a user defined color and outline color.

By changing the size and location of your Plotarea you implicitly change the size
of your chart's margins. All Axis and DataRepresentation geometries will
automatically adjust to accomodate your Plotarea definition.

 13

Background

Background

The rectangle underlying the entire chart is called a Background. The
background also contains a title and sub-title. You can set the color of the
background or use an image for the background if you prefer. You can also set
the color and font of each of the title strings.

DataRepresentation

Data Representation

A DataRepresentation is the name KavaChart uses for a variety of objects.
These include Line, Area, Bar, and Pie, as well as other more specialized
DataRepresentations. These items visually describe a group of Datasets. For
example, bar DataRepresentations exist that draw multiple series horizontally or
vertically, and side by side or stacked. Bars also exist to represent high and low
values, and to draw hi-lo-close, candlestick, histogram and other industry-
specific visuals.

DataRepresentations obtain graphical information like colors and label fonts
from the Datasets represented. Additionally, the X, Y (and other) magnitudes, as
well as the bar/pie/etc. labels are derived from information in the Datasets.

Because DataRepresentations provide specific visual representations, they often
have specialized properties. For example, bars can have variable cluster widths
(the width of one group of bars), pies can vary the starting angle and toggle
visibility on percent labels, speedos can have various types of needles, and so on.

 14

Legend

Legend

A Legend contains a description of the Datasets in a particular chart. The icons
and label text comes from the chart's Datasets. The X and Y values of a legend's
lower left corner describe the legend's location. These values are in percentages
of the overall chart. For example, a location of (0.5, 0.5) would place the lower
left hand corner of the legend exactly at the center of your chart (50%, 50%).

Legends can have a background color, label font and font color. They can be
arranged horizontally or vertically. You can also adjust the size of the legend's
icons and the gap between the icon and the legend text (again, in percentages of
the overall chart). Legends that are too large for the space you have defined will
attempt to create a table of entries (rows and columns).

Various types of legends exist. These include standard Legends, which describe
each dataset with a Dataset name and a rectangular icon, Pie legends, which
describe each element in the first Dataset with an icon and the element name,
and LineLegends, which use a line and optional marker for each Dataset.

 15

Chapter

4
KavaChart Applet
Details
Chart applets provide the quickest way to turn your data
into a dynamic chart.

What’s an Applet?
Java applets are small programs that typically run within the context of a web
browser. When an applet runs, the browser requests the applet's "code" from
the server, and then installs and runs that within the browser's Java Virtual
Machine, which can be either built-in or a plug-in. The server is responsible
only for sending the data that comprises the applet's program code. The
browser actually runs the code.

KavaChart organizes charts into a collection of applets, one applet per chart
type. This design helps minimize the amount of code that must be downloaded
to create a chart image. For example, bar charts don't require any code for
supporting pie slices.

Each applet reads from a list of parameters in its HTML definition, and creates
a chart image that corresponds to those params. A single HTML page can
contain several applets, each one with a unique set of params.

Why Applets?
Applets provide a convenient and automatic way to distribute graphics
computing across many machines. While it might not seem like much work to
generate a chart image, servicing the requests of many users can create a
significant load on your server resources. To distribute this task to page viewers
requires only that the server send the applet code and the appropriate params.
Since Java support is built into nearly all browsers, this process is completely
automatic, and invisible.

Since chart applet appearance and data can be managed with simple text params,
it's easy to create server scripts and programs that generate dynamic, data-based

 16

charts. All that's required is a server script that generates different params for
different charts.

And if your charts include locale-sensitive formatting, such as month names,
percentages, or numbers greater than 1,000, KavaChart applets will
automatically localize the display for the language and locale settings of the client
browser. This can be a powerful tool if you need to support multiple locales
from the same data. Of course, you can also specify a locale to make sure your
users always see numbers formatted according to a particular convention.

Applets are not completely without drawbacks, however. It's possible for a user
to misconfigure their browser's Java support so that applets don't work as
expected on a particular machine. It's also possible that your clients include
browsers without Java support

Also, the first time a user views an applet, its code must be downloaded from
the server. While this process is automatic and doesn't require any special
configuration or user confirmation, there may be a slight pause while the Java
libraries are loaded and started, and while the actual applet code is downloaded.
Once the applet has been viewed, its code is stored in the browser cache, so
subsequent views are faster than the initial viewing. KavaChart applets are
designed to have a very small code "footprint", to minimize startup time.

Bottom line? Applets are most appropriate for environments that have a
known user base; where you understand what browser software will be used to
access your information, and are reasonably certain that configuration
parameters haven't precluded applet use. Server side charting (KavaChart
ProServe) is most appropriate if you need absolute control over the user
experience, and have adequate server resources for dynamic imaging.

Anatomy of an applet definition
HTML applet descriptions take a standard form, similar to this:

<applet code=MyApplet width=100 height=100>
</applet>

When a browser encounters an applet definition like this, it creates a 100 by 100
pixel space within the page, and starts a Java Virtual Machine (JVM) to manage
this space. The JVM loads the applet's code from a file called "MyApplet.class"
located in the same document base as the HTML containing this applet. If
MyApplet.class needs additional resources, those resources are loaded
automatically by the JVM.

KavaChart applet definitions are only slightly more complicated. Here's a
simple example:

<applet code=com.ve.kavachart.applet.barApp width=300 height=200>
 <param name=dataset0yValues value="234,432,234">

 17

</applet>

This example has two important differences. First, the JVM isn't looking for a
class file named "com.ve.kavachart.applet.barApp.class", even though it looks
that way. Instead, this file is located in
"com\ve\kavachart\applet\barApp.class", using Java's namespace conventions.
Internally, this file identifies itself as part of a Java "package" called
com.ve.kavachart.applet, and the files in that package must all be located in the
directory or folder named "com\ve\kavachart\applet".

Second, this example uses a "param" statement to define some data. KavaChart
applets understand an extensive list of parameters for defining just about every
aspect of a chart, including colors, layout, fonts, titles, axis management, and so
on.

It's also important to note that barApp doesn't include everything needed to
draw bar charts. It uses a set of other class files located in
com\ve\kavachart\applet and com\ve\kavachart\chart. These include
com.ve.kavachart.applet.ChartAppShell, which manages applet drawing,
printing, etc., com.ve.kavachart.utility.ParameterParser, which reads and
interprets applet parameters, com.ve.kavachart.chart.BarChart, which contains
bar chart drawing logic, com.ve.kavachart.chart.Axis, which draws axes, and so
on. The JVM will automatically figure out which support files are needed, and
will pull them from the subdirectories.

In practice, however, you’ll be using KavaChart's pre-built archive files, like this:

<applet code=com.ve.kavachart.applet.barApp archive=applet.barApp.jar
 width=300 height=200>
 <param name=dataset0yValues value="234,432,234">
</applet>

In this example, the browser looks file a file named "barApp.jar" for the applet's
code. This file is a ZIP archive that contains all the class files required by
com.ve.kavachart.applet.barApp. If you examine this archive with a tool like
"jar" or "WinZip", you'll see that it contains part of the com.ve.kavachart
directory structure, including com\ve\kavachart\applet\barApp.class.

You’ll find a JAR file for each applet in the KavaChart AlaCarte collection you
downloaded. The JAR files are named “applet.className”, where “className”
is the name of the specific Java applet you’re using.

Another important applet definition attribute is CODEBASE. Here's an
example:

Using CODEBASE

<applet code=com.ve.kavachart.applet.barApp
 archive=barApp.jar codebase="/javastuff/jars/"
 width=300 height=200>
<param name=dataset0yValues value="234,432,234">
</applet>

 18

CODEBASE causes the browser to look in a specific location for its code
resources. In this example, the browser will look for /javastuff/jars/barApp.jar
to find com.ve.kavachart.applet.barApp. This is particularly useful when your
page is generated from a script or a servlet, so that the document base is
ambiguous. Since KavaChart applets are generally used in conjunction with a
script or a servlet to define the data parameters dynamically, the CODEBASE
attribute is especially useful for KavaChart applets.

Another side effect of using codebase might not be so obvious. Java applets are
designed to be extremely secure. This is accomplished by limiting what an
applet can do. One of the limitations restricts applet access to any server
resources outside the CODEBASE. This means that a KavaChart applet param
that specifies an image texture or marker outside the CODEBASE will fail. The
same restriction will affect URL data params, background images, and fill
textures. The solution is to set up your codebase in a way that permits access to
the server resources you need. Here's how we can change the previous
definition to give us more access to server resources:

<applet code=com.ve.kavachart.applet.barApp
archive="javastuff/jars/barApp.jar" codebase="/" width=300
height=200>
<param name=dataset0yValues value="234,432,234">
<param name=dataset0Image value="images/marble.jpg">
</applet>

By moving codebase to the server's root directory, we get access to the entire
server. And, by expanding our archive definition, we can still point to the same
server directory and archive file.

KavaChart Applets and Data
Every chart creates a graphical representation of numeric information.
Different kinds of charts require different kinds of numeric information, but
every chart requires at least some sort of numbers to start with. KavaChart
organizes this information into "Datasets", which contain the numbers and text
required by your chart.

Some charts have a single dataset (pie charts and speedos), while others may
have many datasets (each line on a line chart is a different dataset). Similarly,
some datasets contain a lot of information for each observation (a candlestick
chart has a time, high, low, open, close, and label value for each price bar), while
others contain only a little (a speedo uses only a single value, and a pie uses one
value and one label for each slice).

Following mathematical conventions, the most basic numeric unit for each
observation in a chart is called a "Y" value. This means that we use "Y" values
to define the value for each slice in a pie, or the height of each column, or even

 19

the width of a bar in a horizontal bar chart. Y values are required for any chart
to create a meaningful visual.

Every chart can also contain a textual label for each Y value. These charts don't
always display that label, but it's available. For example, you might assign some
labels like "East", "West", "North", and "South" to a bar chart. The labels
might not be visible on the chart, but you could use them in a tooltip label for
users that want to explore further.

Some charts also use "X" values, which is generally thought of as the
"independent", or deterministic part of your observation. For example, if your
chart shows how ozone levels compare to temperature, you would assume that
temperatures are "independent" of ozone levels, while ozone levels may be
"dependent" on temperatures. Temperature would be used as "X" values in this
case. A line chart that plots ozone levels against temperature might have a
variety of temperature observations that don't fall into neatly defined categories,
but for each temperature observed (X), there would also be an ozone level
observation (Y).

Not all charts use X values. In some cases (pie charts) this is obvious. In other
cases, it may not be. For example, bar charts don't usually use X values, because
bars are generally used to represent categories, rather than a set of independent
numeric values. In the case of a bar or column chart, KavaChart will ignore
your X values, and use a set of implied X values (0, 1, 2, ...).

More complex charts, such as hi-lo bar charts or financial charts (OHLC,
Candlestick) require additional information, which we call "Y2" and "Y3" data.
This auxiliary information takes on special meaning depending on the chart that
calls for it.

All this X, Y, Y2, and Y3 data is organized into datasets. Every chart can
contain up to 40 datasets, with an unlimited number of observations in each
dataset. Some charts (speedo and pie, for example) don't use all the data; these
charts use the lowest numbered information available. For example, pie charts
use dataset 0, and speedos use only observation 0 of dataset 0.

In addition to the numbers and text, each observation can also take a fill color
definition, a line color, and a fill style and line style. The dataset that contains
the observations also has fill, line, and color information, and a name for the
overall dataset. Different charts use all this information in different ways.

For example, a pie chart uses the color definitions for each observation to draw
each slice, and individually colored bar charts use this information for each bar's
color and for legend icons. Standard bar charts and line charts use the dataset
colors and labels for drawing and legends.

 20

How do you get all this information into your applet? Generally you'll do this
using applet dataset params. Here's an example of an applet with a simple data
definition:

<applet code=com.ve.kavachart.applet.columnApp
 archive=”applet.columnApp” width=300 height=200>
 <param name=dataset0yValues value="234,321,234">
</applet>

This applet uses a single parameter to define the "Y" values for dataset 0. To
add another series, we'd just add another param, using dataset1yValues. To add
another bar to our chart, we'd just add another number to the list "234,321,234".

In this applet we don't need X values, Y2 values or anything else, because we're
just dealing with a simple bar chart. If we wanted to add some labels, we could
do this:

<applet code=com.ve.kavachart.applet.columnApp
 archive=”applet.columnApp” width=300 height=200>
 <param name=dataset0yValues value="234,321,234">
 <param name=dataset0Labels value="a,b,c">
</applet>

It doesn't matter what order the params are in.

The item labels can be used in various ways. For example, right now, the chart
will use these labels along the horizontal axis to label each bar. However if we
add the param "labelsOn" and set the value to "true", we'll get labels at the top
of each bar. The same applet definition can be used for pie charts, line charts,
or any other kind of chart by changing the "code=" portion of our applet
definition.

Params are available for dataset0yValues, dataset0xValues, dataset0y2Values,
dataset0y3Values, and dataset0Labels for datasets 0 through 39. This is a
convenient way to generate dynamic charts if you're building your HTML
output with a script or a servlet. Just make the param values dynamic, and the
charts will reflect up to the minute data. For example, if you are using a JSP, do
something like this:

J S P S A M P L E
<%
 String getSomeNumbersHere(){
 return "123,432,123";
 }
 String getSomeLabelsHere(){
 return"a,b,c";
 }
%>
<applet code=com.ve.kavachart.applet.columnApp width=300
height=200>
<param name=dataset0yValues
value=<%=getSomeNumbersHere()%>>

 21

<param name=dataset0Labels value=<%=getSomeLabelsHere()%>>
</applet>

Of course, your JSP will do something much more useful, like display actual
data, but the basic concept is the same.

The table below gives parameter names and usage descriptions. All parameters
listed as “dataset0” are valid for datasets 0 through 39. Items described as “lists”
expect a comma separated list of values, colors, etc. You can change the
delimiter from a comma to another character with the “delimiter” param.

Dataset
Parameters

Parameter Name Type Effect

dataset0xValues list comma separated list of X values for dataset 0.

dataset0yValues list comma separated list of Y values for dataset 0

dataset0y2Values list comma separated list of difference values for dataset 0 hilo bars

dataset0xyValues List comma separated list of X,Y values for dataset 0.

dataset0dateValues List Comma separated list of time/date strings for dataset 0. See also
“inputDateFormat”.

dataset0y3Values list Tertiary observations for charts that require 3 Y values (e.g. hi-lo-
close charts)

Charts that display time oriented data (dateLineApp, dateAreaApp, etc.) use
time stamps as a special kind of numeric value. For these charts, use the param
dataset0dateValues, like this:

Time oriented
charts

<applet code=com.ve.kavachart.applet.dateLineApp width=300
height=200>
 <param name=dataset0yValues value="234,321,234">
 <param name=dataset0dateValues
value="01/01/02,02/01/02,03/01/02">

</applet>

This param translates the dates into a form usable by Java classes and places our
Y observations at the proper locations along the axis. Unfortunately, our date
definitions are ambiguous here. Did our observations occur on January 1, 2,
and 3? Or did they occur on January 1, February 1, and March 1?

To properly use dataset0dateValues, you should also use inputDateFormat: Managing Date
Formats

<applet code=com.ve.kavachart.applet.dateLineApp width=300
height=200>
<param name=dataset0yValues value="234,321,234">
<param name=dataset0dateValues

 22

value="01/01/02,02/01/02,03/01/02">
<param name=inputDateFormat value="MM/dd/yy">
</applet>

The table below describes how to construct an inputDateFormat to match your
data generator.

Field Full Form Short Form

Year yyyy (4 digits) yy (2 digits)
Month MMM (name) MM (2 digits), M (1 or 2 digits)
Day of week EEEE EE
Day of Month dd (2 digits) d (1 or 2 digits)
Hour (1-12) hh (2 digits) h (1 or 2 digits)
Hour (0-23) HH (2 digits) H (1 or 2 digits)
Hour (0-11) kk (2 digits) k (1 or 2 digits)
Hour (1-24) KK (2 digits) K (1 or 2 digits)
Minute mm None
Second ss None
Millisecond SSS None
AM/PM a None
Time Zone zzzz zz
Day of Week in Month F (e.g. 2nd Tuesday) None
Day in year DDD (3 digits) D (1, 2, or 3 digits)
Era G (e.g. BC or AD) None

Tip:

If you're generating dynamic applet data from a JSP that uses
JDBC, you can probably use the param dataset0xValues.
Assuming your observation dates are java.sql.Date classes, just use
the "getTime()" method to pass the raw numeric information into
the applet instead of formatting the output to match an applet
input format.

Time and date oriented charts have special parameters for managing axes, which
are listed later in this chapter.

 23

URL Datasets
KavaChart applets can also read data from a URL. In this case, the applet runs
without data in the "param" tags, but retrieves numbers and labels from the
server. This is particularly useful if you expect your users to keep a page open
for a while, since you can instruct the applet to check for new data periodically,
and it will automatically update when the data changes.

Here's a sample:

<applet code=com.ve.kavachart.applet.columnApp width=300
height=200>
<param name=dataset0yURL value="http://yourserver/cgi-
bin/NumberGenerator.cgi">
</applet>

 This applet expects the URL "http://yourserver/cgi-
bin/NumberGenerator.cgi" to return a delimited list of numbers, like this:

123,432,123

The default delimiter is comma, but you can also use the param named
"delimiter" to change this to something else.

You can also point to a file, a servlet, a JSP, or any other URL that returns a
delimited list of numbers.

This kind of data retrieval becomes much more interesting if you add another
param, "networkInterval". This param instructs the applet to re-read the URL
after the specified period for a new data list. The new data replaces the entire
dataset with new data, rather than appending data. To make your applet re-read
data every 5 seconds, do this:

<applet code=com.ve.kavachart.applet.columnApp width=300
height=200>
<param name=dataset0yURL value="http://yourserver/cgi-
bin/NumberGenerator.cgi">
<param name=networkInterval value="5">
</applet>

Other params exist for X values (dataset0xURL), Y2 values (dataset0y2URL0,
Y3 values (dataset0y3URL0), data labels (dataset0URLLabels), and for
combined X and Y data, in the form of x1,y1,x2,y2,... (dataset0xyURL). Of
course, if you have a large number of datasets, the applet might be calling many
scripts to get all this information, so KavaChart applets also support reading
blocks of data in various forms.

These block params include the simple param URLDataBlock, which points to
lists of Y values, like this:

 24

123,432,123
432,123,452
123,432,123

Where each line is a new dataset, and each item in the line is another Y value.

You can also use a list of row oriented data with URLDataRows, which is
similar to URLDataBlock, but interprets each line as containing both X and Y
values. If you have column-oriented data, you can use URLDataColumns. For
efficiency, this format expects to have a single number on the first line that
specifies the number of rows in the output. The first two columns are dataset
0's X and Y values. The next two columns are dataset 1's X and Y values, and
so on. The block data readers expect all datasets to have the same number of
observations.

If you're using a date oriented chart, there's a special param called
"customDatasetHandler". This param points to a URL that returns data in a
format like this:

12/25/02, 3, 2, 5
12/26/02, 4, 6, 3
12/27/02, 7, 5, 8
...

Each line in this stream consists of a timestamp (a date in our example),
together with a Y value for each dataset you're using. Our example has 3
datasets.

The table below describes KavaChart’s built-in URL dataset parameters. URL Dataset
Parameters

Parameter Name Type Effect

dataset0xURL URL URL for a file of comma separated X values for dataset 0

dataset0yURL URL URL for a file of comma separated list of Y values for dataset 0

dataset0URLLabels list comma separated labels for URLs

URLDataBlock URL URL for a file of comma separated Y values. Each line in this
file is assumed to be a unique dataset.

URLXYDataRows URL
URL for a file of comma separated XY pairs arranged into rows.
Each row represents a single dataset, with values arranged as
x1, y1, x2, y2, x3, y3...

URLXYDataColumns URL

URL for a file of comma separated XY pairs arranged into
columns. This file must contain a single value as the first line of
the file, specifying the number of observations (rows) in the file.
The first two columns are dataset 1, the second two columns
are dataset 2, etc.

networkInterval integer Number of seconds to wait before re-reading URL datasets

customDatasetHandler string

information passed to a user-defined dataset handling routine
"void getMyDatasets(String str)" Note: in the case of time
oriented charts, this is the URL for a data file that contains
columnar Date information

 25

internalData True|false
If this parameter is set to “true”, the user-defined method
“getDataset” will be called repeatedly until a null value is
returned.

Time and date applets use some additional special parameters to limit views on
incoming data, add incremental data, and so on. These are in addition to the
“inputDateFormat” parameter, which should always be used to help the applet
parse incoming data.

Special time
oriented URL
parameters

Parameter Type Effect

startData String
Ignore any data earlier than this time/date. Note: this string is passed into
Java's "Date" class to be translated into a machine independent time stamp.
Many time-stamp formats will work. If you need to use a specific input
format, see the Date Format section below.

endData String
Ignore any data later than this time/date. Note: this string is passed into
Java's "Date" class to be translated into a machine independent time stamp.
Many time-stamp formats will work. If you need to use a specific input
format, see the “Incoming Date Formats” section above.

inputDateFormat String Use this pattern to read any incoming data. For more information on how to
construct this string, see the “Incoming Date Formats” section above.

incrementalDataURL URL
A URL to poll for additional data points. Date oriented charts read initial data
from the URL or file specified in "customDatasetHandler". Subsequent
observations can be added to applets by polling the URL specified in this
parameter. This URL will be checked each networkInterval.

One special case deserves notice here. Some charts support the notion of
"discontinuities" (disLineApp, disDateLineApp, etc.). In these charts, you want
to have a break in the line or some other visual feedback that shows missing
data. In this case, you can just use some non-number, like 'x', to indicate a
break. KavaChart recognizes this as a missing point and creates the line break
as appropriate. Here's an example:

Discontinuities

<applet code=com.ve.kavachart.applet.disLineApp
 width=300 height=200>
<param name=dataset0yValues
value="23,32,45,43,23,65,45,x,54,34,76,45,78,54,23">
</applet>

There are some important restrictions placed on Java applets that you'll need to
be aware of if you're using URL data sources. Java applets are designed to be
very secure, and run in a so-called "sandbox" that prevents access to certain
kinds of resources that are available to other programs. In particular, applets are
not permitted to open URLs outside their "CODEBASE". This is done for a
very good reason, to prevent applets from accessing arbitrary network locations,
but it can also lead to failed URL data feeds. If your URL data doesn't come
from a source "beneath" the applet's document base somewhere, see the
discussion above on CODEBASE to see how to work around this issue.

CODEBASE, again

 26

Color and Style Parameters
KavaChart applets support a lengthy list of parameters to help you make your
charts look exactly the way you want. These parameters are used to set colors,
fonts, textures, line styles, and the overall layout of your chart.

Color and style parameters take different kinds of values. The table below gives
you some examples of what these values should be.

Parameter
Type

Explanation Example

Integer An integer value, like “1”, or “7”.
This is usually used to specify
something like a line style or a
marker style; one out of a list of
several available types.

<param name=”legendTexture”
value=”1”>

Double A real number value, like 0.25.
Generally, these values are
expressed in terms of a
percentage of the overall chart
size.

<param name=”plotAreaBottom”
value=”0.12”>

Font font parameters include
information for the font name,
the font size, and the font style.
Any valid Java font works here,
but we start with a default of
TimesRoman 12pt in most
cases to ensure that the font is
available. The example instructs
KavaChart to use 18 point Arial
italic fonts for this chart's X axis
labels. 0 is plain, 1 bold, and 2
italic.

<param name=”xAxisLabelFont”
value=”Arial,18,2”>

Color this field expects a color name,
or a hexadecimal color definition
(in RGB). Valid colors names in
these applets include black,
white, gray, darkGray, lightGray,
red, pink, orange, yellow, green,
magenta, cyan, and blue. A valid
hex definition for white is "ffffff".
You can also use the color
"transparent" if you don't want a
particular element to be visible.

<param name=”titleColor”
value=”ffbb00”>

List These fields are looking for a list
of items, separated by a
delimiter. The default delimiter is
a comma character, but you can
change this with the “delimiter”
param.

<param name=dataset0Colors
value=”green,red,ff00aa”>

String A text string <param name=titleString
value=”hello, world”>

url These fields expect some URL
specification within your applet’s
CODEBASE. Relative or
absolute URLs are OK.

<param name=”backgroundImage”
value=http://me/coolpic.jpg>

 27

Boolean Either “true” or “false” <param name=”outlineLegend”
value=”false”>

Anything Some parameters can take any
value. The applet just wants to
know if the parameter has been
defined

<param name=”3D” value=”yeah,
sure”>

The first set of parameters applies to all charts. These parameters define colors,
overall layout, titles, and so on.

General Color and
Font Parameters

Parameter Value
Type

Effect

colorPalette String

Set the overall default color palette for the chart. Default
possibilities:
 web_sanfrancisco,
 web_minnesota,
 web_alaska,
 web_newyork,
 web_losangeles,
 web_grays,
 web_seattle,
 web_newmexico,
 web_rosemary,
 web_pastel,
 web_prague,
 presentation_cool,
 presentation_browns,
 presentation_southwest,
 presentation_impact,
 presentation_deep,
 presentation_oceana,
 presentation_sophisticated

The default is “web_newyork”

titleString String Chart Title (default none)

titleFont font Font name, size, & style for chart title (default TimesRoman,
plain, 12 pt)

titleColor color color of text in Title (default black)

titleX double X location of the title string, if this is not specified the title will
be centered.

titleY double Y location of the title string.
subTitleString String Chart Sub-Title (default none)

subTitleFont font Font name, size, & style for chart title (default TimesRoman,
plain, 12 pt)

subTitleColor color color of text in Title (default black)

subTitleX double X location of the subtitle string, if this is not specified the
subtitle will be centered.

subTitleY double Y location of the subtitle string.
labelsOn anything determines whether bar, line, pie, etc., labels will be visible
labelAngle integer the number of degrees to rotate datum labels
labelPrecision integer the number of digits of precision for datum labels

 28

labelFormat integer
deprecated - by default, servlets and applets will use the locale
to determine how numbers should be formatted. You can
override this with labelFormat for compatibility with older
releases of KavaChart. Also see: locale

legendOn anything make the legend visible
legendOff anything make the legend invisible (default)
legendColor color sets the background color of a legend
legendVertical anything legend icons in vertical list
legendHorizontal anything legend icons in horizontal list (default)

legendLabelFont font Font name, size, & style for legend (default TimesRoman,
plain, 12 pt)

legendLabelColor color color of text in legend (default black)
legendllX double X location of lower left legend corner (default 0.2)
legendllY double Y location of lower left legend corner (default 0.2)
iconWidth double width of legend icon (default 0.07)
iconHeight double height of legend icon (default 0.05)
iconGap double gap between icon and next legend entry (default 0.01)

legendSecondaryColor color The Color to be used as the secondary color for this legend’s
texture/gradient.

legendGradient integer
Sets the gradient for this legend. Available gradient values are
0 for left/right mirrored, 1 for top/bottom mirrored, 2 for top to
bottom, and 3 for left to right

legendTexture integer
Sets the texture for this legend. Available texture values are 0
for horizontal stripes, 1 for vertical stripes, 2 for diagonal down
stripes, 3 for diagonal up stripes, 4 for cross hatching, and -1
to use the legend image to create the texture.

legendImage URL (or
filename)

image to use for this legend's background (default none). Use
this property to define line markers for scatter plots.

legendLineWidth integer pixel width of legend outline

legendLineStyle integer
Sets the line style for this legend's outline. Available values for
this parameter are 0 for dashed, 1 for dotted, 2 for dot-dashed,
and -1 for solid (default = -1).

plotAreaTop double top of the plotting area (default 0.8)
plotAreaBottom double bottom of the plotting area (default 0.2)
plotAreaRight double right side of the plotting area (default 0.8)
plotAreaLeft double left side of the plotting area (default 0.2)
plotAreaColor color color of plotting area background (default white)

plotAreaSecondaryColor color The Color to be used as the secondary color for this plotarea's
texture/gradient.

plotAreaGradient integer
Sets the gradient for this plotarea. Available gradient values
are 0 for left/right mirrored, 1 for top/bottom mirrored, 2 for top
to bottom, and 3 for left to right

plotAreaTexture integer
Sets the texture for this plotarea. Available texture values are 0
for horizontal stripes, 1 for vertical stripes, 2 for diagonal down
stripes, 3 for diagonal up stripes, 4 for cross hashing, and -1 to
use the plotarea image to create the texture.

 29

plotAreaImage URL (or
filename)

image to use for this plotarea's background (default none). Use
this property to define line markers for scatter plots.

plotAreaLineWidth integer pixel width of plotarea outline

plotAreaLineStyle integer
Sets the line style for this plotarea's outline. Available values
for this parameter are 0 for dashed, 1 for dotted, 2 for dot-
dashed, and -1 for solid (default = -1).

backgroundColor color color of chart background (default white)

backgroundSecondaryColor color The Color to be used as the secondary color for this
background's texture/gradient.

backgroundGradient integer
Sets the gradient for this background. Available gradient
values are 0 for left/right mirrored, 1 for top/bottom mirrored, 2
for top to bottom, and 3 for left to right

backgroundTexture integer
Sets the texture for this background. Available texture values
are 0 for horizontal stripes, 1 for vertical stripes, 2 for diagonal
down stripes, 3 for diagonal up stripes, 4 for cross hashing,
and -1 to use the plotarea image to create the texture.

backgroundImage URL (or
filename)

image to use for this background's background (default none).
Use this property to define line markers for scatter plots.

backgroundLineWidth integer pixel width of background outline

backgroundLineStyle integer
Sets the line style for this background's outline. Available
values for this parameter are 0 for dashed, 1 for dotted, 2 for
dot-dashed, and -1 for solid (default = -1).

3D anything turns on 3D effects for this chart (default 2D)
2D anything turns on 2D effects for this chart (default 2D)

XDepth integer number of pixels of offset in X direction for 3D effect (default
15)

YDepth integer number of pixels of offset in y direction for 3D effect (default
15)

locale String

KavaChart automatically localizes your charts for the locale of
the Java Virtual Machine that creates the chart. For applets,
this means your charts will automatically change things like
month labels, number formatting, and so on, depending on
whether your viewers are in, say, France, or Japan. You can
override the locale with this parameter if you create a signed
applet. Generally, locale changes are disallowed by the applet
SecurityManager. Valid locales include canada,
canada_french, china, chinese, english, france, french,
german, germany, italian, italy, japan, japanese, korea,
korean, prc, simplified_chinese, taiwan, traditional_chinese,
uk, and us. You can also create a locale using two letter
language codes and country codes in this format:
langageCode_countryCode (for example "en_US" denotes
english/U.S.).

delimiter String the separator character for list parameters. Default is comma
(e.g. "123.432.123").

defaultFont Font

A new default font for your charts. This parameter overrides
the default font setting for KavaChart graphs. This parameter
sets a new default for all KavaChart graphics running within
the Java Virtual Machine in the current session, so you should
use it cautiously. Its primary value is for settings that wish to
start with consistent font usage for all charts.

backgroundImage URL or
file name

Charts can replace the solid background color with a GIF or
JPEG image for added effect.

 30

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

outlineColor Color
Color to use for outlining bars, plotareas, etc. (Default none).
Using this param automatically enables outlining for most
objects

outlineDataRepresentation true/false
If outlineColor is set to some color, you can selectively turn the
outlining off for the DataRepresentation (Bars, Pie, Area, etc.)
by setting this property to "false". Default is "true".

outlinePlotarea true/false
If outlineColor is set to some color, you can selectively turn the
outlining off for the Plotarea (the region bounded by the x and
y axes) by setting this property to "false". Default is "true".

outlineBackground true/false
If outlineColor is set to some color, you can selectively turn the
outlining off for the Background (the total chart image area) by
setting this property to "false". Default is "true".

outlineLegend true/false
If outlineColor is set to some color, you can selectively turn the
outlining off for the chart Legend by setting this property to
"false". Default is "true".

showVersion true/false If this is set to true, the chart will be printed with the version
number as the chart title.

annotation0LabelString String A label for note 0 (unlimited notes available) Note: a “|”
character will break this note into multiple lines.

annotation0Alignment
above|
below|
left| right

Where note should appear relative to location

annotation0CoordinateSpace pixel|axis Coordinate space for location values

annotation0Xloc Number Pixels or axis values

annotation0YLoc Number Pixels or axis values

annotation0LabelFont Font Font for this note

annotation0LabelColor Color Font color for this note

annotation0FillBackground true|false Determines whether this note will have an opaque background

annotation0BackgroundColor Color Note’s background color

annotation0OutlineColor Color This note’s outline color (if any)

The following tables contain parameters for adjusting axes. Line, area, bar, and
their derivatives use these parameters. Axis parameters consist of a set of
parameters and an option list. The option list is followed by a separate table that
describes detailed axis options.

Axis Related
Parameters

Axis Option Lists The option lists include various options for adjusting the look of an X or Y axis.
Use these parameters in a list, like this: param name=xAxisOptions value="gridOff,
tickOff, lineOn". If you're modifying an auxiliary Y axis (such as in a chart that has
left and right axes), use auxAxisOptions.

yAxisOptions (xAxisOptions) Effect

autoScale automatically create axis scale (default)
noAutoScale axis scale defined in applet parameters
rotateTitle "true" if vertical axis title should be parallel with axis

 31

logScaling "true" if axis should use log scaling
lineOn axis line is visible (default)
lineOff axis line is invisible
tickOn major tick marks are visible (default)
tickOff major tick marks are invisible
minTickOn minor tick marks are visible
minTickOff minor tick marks are invisible (default)
labelsOn axis labels are visible (default)
labelsOff axis labels are invisible
gridOn grid lines are visible
gridOff grid lines are invisible (default)
rightAxis this axis goes on the right
topAxis this axis goes on the top
bottomAxis this axis goes on the bottom
leftAxis this axis goes on the left (default)

percentLabels
This axis will use a localized percentage
representation for the axis labels (not valid for time
and label axes)

currencyLabels This axis will use a localized currency representation
for the axis labels (not valid for time and label axes)

If you're modifying an X Axis (usually on the top or bottom of a chart), use
xAxisParameterName instead of yAxisParameterName. X Axes are on the left and
right for Horizontal Bar Type charts. Speedo and Polar charts have a single
Axis, which is a Y Axis.

Detailed Axis
Parameters

If you're modifying an Auxiliary Y Axis (charts that have left and right axes, for
example), use auxAxisParameterName instead of yAxisParameterName.

Axis Parameter Value Type Effect

yAxisTitle string Axis title
yAxisTitleFont font Axis title font
yAxisTitleColor color Axis title color
yAxisLabelFont font use this font for axis labels
yAxisLabelColor color axis labels in this color (default black)

xAxisLabels list

A comma separated list of user-defined labels for this Axis.
This is only effective for certain types of chart (BarChart
derivatives, LabelLineChart, Area charts) that use a
LabelAxis. By default, LabelAxis is only used for X axes,
although you can change this by making a minor
modification to the applets.

yAxisLabelAngle integer label rotation in degrees (default 0) Note: rotations of 0 and

 32

90 degrees will be the most readable

yAxisLabelFormat
0:default,
1:Comma,
2:European

(default 0) Note: by default, charts will automatically localize
formats based on the Java Virtual Machine running the
chart. (deprecated – see “locale”)

yAxisLabelPrecision integer Number of digits past the decimal point to display
yAxisLineColor color axis line color (default black)
yAxisTickColor color axis tick mark color (default black)
yAxisGridColor color axis grid line color (default black)
yAxisColor color sets axis grids, ticks, lines and labels to the same color
yAxisTickLength integer number of pixels long for axis tick marks
yAxisMinTickLength integer number of pixels long for axis minor tick marks

yAxisStart double

starting value on axis. By default, axes automatically
determine a starting and ending value. By setting this value,
you can give the axis a default minimum value. If the Axis is
set to noAutoScale, this value will be used directly.
Otherwise, this value may be adjusted slightly to yield better
looking labels. For example, if you set yAxisStart to 0.01, the
chart may decide to round the value down to 0.0 to create
even axis increments.

yAxisEnd double

ending value on axis. By default, axes automatically
determine a starting and ending value. By setting this value,
you can give the axis a default maximum value. If the Axis is
set to noAutoScale, this value will be used directly.
Otherwise, this value may be adjusted slightly to yield better
looking labels. For example, if you set yAxisStart to 9.99, the
chart may decide to round the value up to 10.0 to create
even axis increments.

yAxisLabelCount integer how many labels on an axis set to noAutoScale
yAxisTickCount integer how many tick marks on an axis set to noAutoScale
yAxisMinTickCount integer how many minor tick marks on an axis set to noAutoScale
yAxisGridCount integer how many grid lines on an axis set to noAutoScale
yAxisGridStyle integer the line style of the grid lines for this axis
yAxisGridWidth integer the width in pixels of the grid lines for this axis
yaxisThresholdLine0Color Color The color of reference line 0 (40 available).

yAxisThresholdLine0LabelColor Color The color of the label for reference line 0

yAxisThresholdLine0LabelFont Font Font for for reference line 0’s label

yaxisThresholdLine0LabelString String Optional label for reference line 0

yAxisThresholdLine0LineStyle Integer Line style for reference line 0

yAxisThresholdLine0Value Double Where on the Y axis should reference line 0 draw.

Tip:

If you want an axis to start at a specific value, but end at some
value based on data, just use yAxisStart without including

 33

noAutoScale among your yAxisOptions. This will cause the axis
to behave as if all your data starts at your specification, but ends
wherever the real data ends.

The following list contains options for Time/Date X axes, such as those used
for dateLineApp and dateAreaApp, as well as financial chart types like stickApp
and hiLoCloseApp

Date and Time
Axis Parameters

DateAxis Parameters Type Effect

startDate string
time/date for axis starting value. Note: this string is passed
into Java's "Date" class to be translated into a machine
independent time stamp. Many time-stamp formats will work.
If you need to use a specific input format, see the Date
Format section above.

endDate string time/date for axis ending value

axisDateFormat string

By default, DateAxis selects an appropriate labelling type
based on your time range and your locale. Your applets will
automatically use, for example, Japanese month names for
browsers in Japan, and German month names for browsers
in Germany. Similarly, applets might choose a yy/mm label
for one locale, and mm/yy for another locale. This parameter
lets you override the axis labels to use your specific
formatting instructions. See the Date Format section above
for more information on how to use the formatting patterns.

axisSecondaryDateFormat string
Some DateAxes use a primary and secondary format to
highlight important boundaries, like years or hours. This
parameter lets you set the date or timestamp format for one
of these boundaries. See the Date Format section above for
more information on how to use the formatting patterns.

scalingType integer

1 scale by seconds
2 scale by minutes
3 scale by hours
4 scale by days
5 scale by weeks
6 scale by months
7 scale by years

axisTimeZone string

This determines the timezone used for displaying date data.
By default applet and servlets use the timezone of their jvm.
This may be incorrect in some cases, for example if my
servlet is parsing time data in New York, and I want a user in
California to see the data in real-time not New York time,
then this parameter can be used to change the way the data
is displayed. Timezones can be specified by JDK 1.1
deprecated strings like PST, EST, etc., by Java 2 standards:
"America/Los_Angeles", or by the difference from GMT in
this syntax: GMT[+|-]hh[[:]mm] (for example Eastern
Standard Time would be equivalent to "GMT-5:00").

inputTimeZone string

This determines the timezone used for parsing date data. By
default applet and servlets use the timezone of their jvm.
This may be incorrect in some cases, for example if my data
is based in New York, my client's applet is parsing time data
in California, and I want my user to see the data in real-time,
then this parameter can be used to change the way the data
is parsed. This is an alternate to inputting the timezone in
your date strings. Timezones can be specified by JDK 1.1
deprecated strings like PST EST etc by Java 2 standards:

 34

"America/Los_Angeles", or by the difference from GMT in
this syntax: GMT[+|-]hh[[:]mm] (for example Eastern
Standard Time would be equivalent to "GMT-5:00").

Dataset colors and styles are very important to KavaChart applets. These colors
are used to define the color of bars, pie slices, legend icons, and so on.

Dataset Related
Color and Style
Parameters

Dataset Parameters
(available datasets 0 through
39)

Type Effect

dataset0Name string name for display in legend (default "dataset0")
dataset0Color color color to use for this dataset (default varies)
dataset0Colors list of colors colors to use for pie slices or bars (default varies)

dataset0SecondaryColor color The Color to be used as the second color with
dataset textures/gradients.

dataset0SecondaryColors list of colors Colors to be used as the second color with dataset
textures/gradients. The default is transparent.

dataset0Gradient integer
Sets the gradient for this dataset. Available
gradient values are 0 for left/right mirrored, 1 for
top/bottom mirrored, 2 for top to bottom, and 3 for
left to right

dataset0Gradients list of
integers

Sets the gradients for this dataset. For available
values see datset0Gradient.

dataset0Texture integer
Sets the texture for this dataset. Available texture
values are 0 for horizontal stripes, 1 for vertical
stripes, 2 for diagonal down stripes, 3 for diagonal
up stripes, 4 for cross hashing, and -1 to use the
dataset image to create the texture.

dataset0Textures list of
integers

Sets the textures for this dataset. For available
values see datset0Texture.

dataset0Image
image to use for this dataset's markers (default
none). Use this property to define line markers for
scatter plots.

dataset0Images list of URLs
images to use for this chart's markers (default
none). Use this property to define individual line
markers for scatter plots. These values will also be
used as fill images for pie charts or individually
colored bar charts.

dataset0MarkerStyle integer
Specify an internal marker for line charts and
scatter plots (0=box, 1=diamond, 2=circle,
3=triangle). Default is -1 (none)

dataset0MarkerStyles list of
integers

Specify internal markers for datsets drawn with
different markers at each data point. See
datset0MarkerStyle for available marker values.

dataset0MarkerSize integer pixel width of internal marker for line charts and
scatter plots.

dataset0MarkerSizes list of
integers

pixel widths of internal markers for line charts with
individual markers

dataset0LineWidth integer pixel width of plot line
dataset0LineStyle integer Sets the line style for this line Available values for

 35

this parameter are 0 for dashed, 1 for dotted, 2 for
dot-dashed, and -1 for solid (default = -1).

dataset0LabelFont font font to use for this dataset's labels (default
TimesRoman 12pt)

dataset0LabelColor color color to use for this dataset's labels (default black)

All KavaChart applets share some additional parameters that control what
information appears in the chart’s dwell labels. These labels are similar to
tooltips, and appear when the cursor is placed over a data item.

You can control what appears in this label: X values, Y values, item labels,
dataset labels, and so on. Here are the parameters that format your dwell labels:

Parameter value
type

effect

dwellLabelsOn true/false Tells the applet whether to use dwell labels.

dwellUseLabelString true/false Tells the applet whether to use each datapoint's label as a
part of the popup dwell labels.

dwellUseXValue true/false Tells the applet whether to use each datapoint's X value as a
part of the popup dwell labels.

dwellUseYValue true/false Tells the applet whether to use each datapoint's Y value as a
part of the popup dwell labels.

dwellUseDatasetName true/false Tells the applet whether to use dataset names in the popup
dwell labels.

dwellXString String A text string containing the character "#" to add descriptive
text to the dwell label X value. Example: "Category #"

dwellYString String A text string containing the character "#" to add descriptive
text to the dwell label Y value. Example: "Unit Sales: $#"

dwellLabelDateFormat String
A format string for describing dates in the dwell label (e.g.
yyyy = 2001). This parameter is used only by time oriented
charts, and uses the formatting strings described above.

dwellXPercentFormat true/false Determines whether the X label will use a percent format

dwellYPercentFormat true/false Determines whether the Y label will use a percent format

dwellXCurrencyFormat true/false Determines whether the X label will use a localized currency
format

dwellYCurrencyFormat true/false Determines whether the Y label will use a localized currency
format

dwellXLabelPrecision Integer
Number of digits of precision for dwell label values. For
example, if precision is "2", labels will look like this: 123.45 or
123,45.

dwellYLabelPrecision Integer Number of digits of precision for dwell label values For

 36

example, if precision is "2", labels will look like this: 123.45 or
123,45.

Hyperlinks permit you to click on portions of your chart and open URLs. This
can be used as a drill-down mechanism to obtain more detailed information
about a particular item, or it can simply open any URL.

Hyperlinks

By default, hyperlinks open in a new browser frame. You can specify a target
frame name, however, or you can specify a target of “_this” to open your URLs
in the current frame.

Note:

By preceding your hyperlink with “javascript:” you can launch a
JavaScript method on the same page. For example:
“javascript:alert(‘hey’)” would launch an alert box.

Because hyperlinks are tied to individual data items, you must provide a list of
URLs for each dataset, similar to the way you specify data labels.

Parameter value
type

effect

dataset0Links list a list of URLs for hyperlinks from dataset0. Datasets 0
through 39 available.

target String Target frame for hyperlink drill-down results

 37

Chapter

5
The Applets and Their
Parameters
KavaChart AlaCarte includes 4 applet collections. This chapter details
the specific parameters available to each chart in each specific collection.

Each applet has a few parameters that deal only with that chart type. For
example, pie charts have a parameter that lets you set the starting angle of the
pie. This parameter doesn’t make sense for bar charts.

Basic Applet Collection
An area chart uses polygons to describe trends. This type of chart is most
appropriate for trends that include cumulative values. For example, an area
chart may be most appropriate for displaying revenue trends for several
categories. The overall trend appears at the top, while each item’s contribution
would appear as a layer.

Area Charts

com.ve.kavachart.applet.areaApp

 38

AreaApp ignores your X value specifications and assumes the values are 0, 1, 2,
3, … This ensures that the areas will align properly. Use the xAxisLabels
parameter to specify your actual labels.

Because area charts are used to display cumulative trends, they don’t generally
give a clear idea of where individual data points are. For this reason, they’re
most appropriate for general trends. Also, dwell labels and hyperlink hot spots
run from mid-point to mid-point for this type of chart.

It’s important for area charts with multiple datasets to use the same X values for
every dataset. Otherwise the areas cannot stack properly.

Note that un-stacked, 3D area charts are problematic. Areas can become
completely obscured, as in the final observation in the chart below:

Parameter value type effect

baseline double sets the baseline value for this area

stackAreas true/false determines whether the areas will be stacked on top of each other
(default is true)

These charts include: Line and Scatter
Charts

 39

com.ve.kavachart.applet.lineApp

com.ve.kavachart.applet.regressApp

com.ve.kavachart.applet.labelLineApp

 40

com.ve.kavachart.applet.disLineApp

com.ve.kavachart.applet.disLabelLineApp

com.ve.kavachart.applet.zoomLine

In general, these charts can be used as conventional line charts, with or without
markers at each vertex. Plot lines can be turned off by parameter. If markers
are turned on with lines turned off, these charts become scatter plots. You can
also plot some dataset lines and make others invisible by setting dataset0Color
to “transparent” for the scatter-only datasets.

Applets that begin with “dis”, such as disLineApp and disLabelLineApp
support discontinuous data. They will create line breaks where data is missing.
See the “data” section in the previous chapter to understand how to define
discontinuities

RegressApp performs a simple linear regression calculation using the data values
passed into the applet. Markers appear at the actual data points, while the line is
drawn according to the regression’s prediction. This is a classic “scatter plot”
that shows positive, negative, or no correlation, and gives visual feedback about
the strength of that correlation.

Parameter value
type

effect

plotLinesOn anything plot lines should display (default)
plotLinesOff anything Create a scatter plot by making plot lines invisible

individualMarkers true/false
If markers are used, this parameter determines whether or not the
datum markers will be used rather than the dataset marker (default
is false). (dataset0Markers, dataset0Colors, etc.)

This category includes both charts with vertical and horizontal bars, as well as
hi-lo bars. The applets are:

Bar and Column
Charts

 41

com.ve.kavachart.applet.barApp

com.ve.kavachart.applet.columnApp

com.ve.kavachart.applet.stackBarApp

com.ve.kavachart.applet.stackColumnApp

Bar charts have variable bar width, an adjustable baseline, and labels that can be
toggled on or off. If you don't include a parameter to define X axis labels, this

 42

chart will use item labels (parameter dataset0Labels) beneath each bar. If item
labels aren't defined, this chart will display each bar's Y value beneath it.

If you want each bar to have a different color, set the parameter
“individualColors” to true, and define the colors with “dataset0Colors”.

StackBarApp and stackColumnApp stack datasets instead of clustering them.
This is useful to display a cumulative summary along with the individual data.

If you’re in a Java 2 or better environment, dataset image parameters will cause
your bars to be drawn using tiles of the specified image.

Parameter value
type

effect

barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series defined,
this value describes the total width of a cluster of bars.

individualColors true/false
In bar/column charts that normally use only the Dataset color for
drawing bars this will determine whether datum colors should be
used instead (default is false).

useValueLabels true/false determines whether the bar labels are the dataset labels or just the
y values (default is false)

dataset0y2Values List This list of numbers is used to add error bars to each bar. (note: you
must also set X values e.g. 0,1,2,3… for error bars to appear)

errorBars True/false Determines whether error bars should appear

Pie Charts include com.ve.kavachart.applet.pieApp, and
com.ve.kavachart.applet.spinningPie. Spinning pie is a variation that lets users
grab a slice and rotate the pie around.

Pie Charts

Pie charts can toggle percentage, value, and textual labels. They can also set a
beginning angle value, and can set an exploded slice for emphasis. Pie chart
colors are defined with the parameter dataset0Colors. Pie charts ignore datasets
beyond dataset0.

 43

Pie Chart
Parameters

value
type

effect

explodeSlice integer slice number to explode

explodeSlices list of
doubles

This will be list of explosion values for each slice. Explosion
values should be between 0 and 1, but generally pretty close to 0.
The default value when a slice is exploded with explodeSlice is
.05

textLabelsOn anything make string labels visible
textLabelsOff anything make string labels invisible (default)
valueLabelsOn anything make numeric labels visible
valueLabelsOff anything make numeric labels invisible (default)
percentLabelsOn anything make percentage labels visible (default)
percentLabelsOff anything make percentage labels invisible
percentPrecision integer the number of digits of precision for Pie percent labels

labelPosition integer 0: at center of slice, 1: at edge of slice, 2: outside edge of slice
with pointer

startDegrees integer degrees counterclockwise from 3 o'clock for first slice
xLoc double x Location for center of pie (between 0 & 1, default 0.5)
yLoc double y Location for center of pie (between 0 & 1, default 0.5)
pieWidth double % of window for pie diameter (default .6 = 60%)
pieHeight double % of window for pie diameter (default .6 = 60%)

pointerLengths list A list of values to redefine the pointer lengths for external labels.
By default, this value is 0.2.

lineColor Color redefines the color used for pie slice pointers
 Combinations: Bar-

Area Chart
BarArea charts layer bars over areas, with shared axes. BarArea charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Area style charting. Bars draw over areas, and may be stacked or clustered. Areas
are always stacked.

com.ve.kavachart.applet.barAreaApp

 44

Parameter value
type

effect

datasetNType Bar|Area dataset N will be either Bar or Area, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

Bar-Line charts layer lines over bars, with shared axes. BarLine charts have
variable bar width, and labels that can be toggled on or off. If you don't include
a parameter to define X axis labels, this chart will use item labels (param
dataset0Labels) beneath each bar. If these labels aren't defined, this chart will
display each bar's Y value beneath it. Data series can be assigned to either Bar or
Line style charting. Lines draw over bars, and bars may be stacked or clustered.

Combinations: Bar-
Line Chart

com.ve.kavachart.applet.barLineApp

 45

Parameter value
type

effect

datasetNType Bar|Line dataset N will be either Bar or Line, based on this value.
stackedBar true|false If "true", bars will be stacked, one series upon another.
barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

SpinningPie (com.ve.kavachart.applet.spinningPie) is a version of pieApp that
lets users grab the edges of a pie and rotate it . This may have some practical
purposes, but it’s primarily use just stresses that this applet is live, and not a
preconsructed image.

Interactive
Applets:
spinningPie

ZoomLine (com.ve.kavachart.applet.zoomLine) extends the basic functionality
of lineApp to support data zooming. By dragging the mouse over a region of
the chart, users create a rubberband effect, which shows the approximate
window that will be displayed when the mouse button is released.

Interactive
Applets: zoomLine

A right click, or alt-click on some systems, will reset the zoom level to no
zooming.

This applet (com.ve.kavachart.applet.scrollingLine) extends the basic
functionality of lineApp to add a scrollbar at the bottom of the chart. This
scrollbar is used to page through views of your data.

Interactive
Applets:
scrollingLine

This applet adds a new parameter “scrollWindows” that specifies the number of
pages that the data should be broken into. For example, if you set the number
of “scrollWindows” to 5 and were viewing 1000 observations, spaced evenly
along the X axis, each scroll page would show 200 points. The default number
of scroll windows is 10.

 46

Timeseries Applet Collection
This applet collection includes a variety of charts designed to display time series.
These charts are typically used to help understand trends over time, and find
extensive use in finance, transportation, energy, and technology.

These applets use a specialized axis that automatically finds appropriate labeling
increments based on the time range displayed, and uses localized conventions
for things like day and month names, week start and ends, and so on. These
time oriented axes are discussed in the previous chapter.

Also, these charts take data in a special way, using dataset0dateValues instead of
dataset0xValues, and customDatasetHandler for block data handling. See the
previous chapter for more information on timeseries data handling.

These applets also support specialized date formatting for dwell labels and axis
labels. See the previous chapter for details.

Time-oriented area charts are terrific for showing trends over time. Date Area Charts

Because area charts are used to display cumulative trends, they don’t generally
give a clear idea of where individual data points are. For this reason, dwell labels
and hyperlinks are disabled for this type of chart.

It’s important for area charts with multiple datasets to use the same X values for
every dataset. Otherwise the areas cannot stack properly.

Parameter value type effect

baseline double sets the baseline value for this area

stackAreas true/false determines whether the areas will be stacked on top of each other
(default is true)

These charts can be used as either scatter plots or as trend lines. One applet
handles discontinuous data, creating line breaks when data is unavailable.
Another lets you scroll through large datasets.

Date Line Charts

 47

com.ve.kavachart.applet.dateLineApp

com.ve.kavachart.applet.scrollingDateLineApp
com.ve.kavachart.applet.disDateLineApp

Parameter value
type

effect

plotLinesOn anything plot lines should display (default)
plotLinesOff anything Create a scatter plot by making plot lines invisible

individualMarkers true/false
If markers are used, this parameter determines whether or not the
datum markers will be used rather than the dataset marker (default
is false).

This chart is most appropriate for displaying continuously updating data. See
the previous chapter for more information about reading data from a URL, and
using “networkInterval” to specify how often data should be refreshed. A new
parameter “maxNumberDataPoints” determines how many points the chart will
contain. When the number of points exceeds this number, the earliest points
will be deleted.

Strip Charts

Unlike other timeseries line charts, data in strip charts always goes from one end
of the plotarea to the next. Also, labels may not be displayed at the time axis
ends, but is instead displayed at the correct location in appropriate increments.

Strip charts support other line chart parameters.

Bar and Column charts are generally not the best vehicles for displaying time-
series data, but they’re available if you need them for your application. These
charts should have at least 20 points to display appropriately, and will not have a
label beneath each bar, but rather at appropriate time increments.

Time-oriented Bar
Charts

 48

com.ve.kavachart.applet.dateBarApp

com.ve.kavachart.applet.dateColumnApp

com.ve.kavachart.applet.dateStackBarApp

com.ve.kavachart.applet.dateStackColumnApp

Bar charts have variable bar width, an adjustable baseline, and labels that can be
toggled on or off. If you want each bar to have a different color, set the
parameter “individualColors” to true, and define the colors with
“dataset0Colors”.

dateStackBarApp and dateStackColumnApp stack datasets instead of clustering
them. This is useful to display a cumulative summary along with the individual
data.

If you’re in a Java 2 or better environment, dataset image parameters will cause
your bars to be drawn using tiles of the specified image.

Parameter value
type

effect

barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series defined,
this value describes the total width of a cluster of bars.

individualColors true/false
In bar/column charts that normally use only the Dataset color for
drawing bars this will determine whether datum colors should be
used instead (default is false).

useValueLabels true/false determines whether the bar labels are the dataset labels or just the
y values (default is false)

Some charts are more useful if elements are assigned to different Y axes. For
example, you might want to compare trends for baseball scores and basketball
scores in the same chart. Baseball scores will be much lower, but there still
might be some discernable trend. In this case, you could just use

Multiple Axis
Charts

 49

twinAxisDateLineApp to assign baseball scores the the right axis, and basketball
scores to the left axis.

com.ve.kavachart.applet.twinAxisDateComboApp: uses time oriented data,
and time oriented axis parameters for the X axis. Datasets can be line or
stick, and may be assigned to either left or right axes.

com.ve.kavachart.applet.twinAxisDateLineApp: uses time oriented data, and
time oriented axis parameters. Datasets are assigned to the left axis by
default, and the right (auxAxis) by parameter.

To change the colors, fonts, title, scaling, etc. for the right axis, use “auxAxis” in
place of “yAxis”. For example, to set the title, you would use the parameter
“auxAxisTitle” for the right, and “yAxisTitle” for the left.

Parameter value type effect

datasetNType Line | Stick This determines the DataRepresentation for datasetN.
TwinAxisDateComboApp only

datasetNonRight true|false This determines whether dataset N will be assigned to the
standard left axis or the auxilliary right axis.

plotLinesOn anything plot lines should display (default).
plotLinesOff anything Create a scatter plot by making plot lines invisible.
auxPlotLinesOn anything plot lines should display (default).
auxPlotLinesOff anything Create a scatter plot by making plot lines invisible

barBaseline double bars ascend or descend from this value, applicable to Sticks in
twinAxisDateComboApp

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

 50

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

auxBarBaseline double sets the baseline value for the Stick's assigned to the aux axis in
TwinAxisDateComboApp

barWidth integer sets the width in pixels of the Stick's in TwinAxisDateComboApp

auxBarWidth integer sets the width in pixels for the Stick's assigned to the aux axis in
TwinAxisDateComboApp

This applet extends the basic functionality of dateLineApp to add a scrollbar at
the bottom of the chart. This scrollbar is used to page through views of your
data.

scrollingDateLine

A new parameter “scrollWindows” specifies the number of pages that the data
should be broken into. For example, if you set the number of “scrollWindows”
to 5 and were viewing 1000 observations, spaced evenly along the X axis, each
scroll page would show 200 points. The default number of scroll windows is
10.

Specialty Applet Collection
These include com.ve.kavachart.applet.speedoApp and
com.ve.kavachart.applet.hSpeedoApp. The only difference between these two
Is that hSpeedoApp adds a history mark in the background; a sort of high water
mark.

Speedos

Speedo charts have adjustable axis locations and styles, as well as adjustable
needle styles. This applet can be particularly useful in conjunction with an image
background to superimpose a dial and needle on a scanned image of a physical
gauge.

Speedos only use the first value of each dataset. However, the other values are
considered for building the speedo’s scale.

To get multiple speedos on a page, use multiple applet definitions.

 51

Speedo Chart
Parameters

value
type

effect

needleStyle integer Kind of needle (default 1) 0 = arrow, 1 = line, 2 = thick arrow, 3
= swept arc

speedoPosition integer 0 (default) is a mostly complete circle, 1 - 4 are semi circles in
various positions, 5-8 are quarter circles in various positions

labelsInside anything labels on the inside of the speedo
labelsOutside anything labels on the outside of the speedo
watermarkColor color for hSpeedoApp, determines the color of the history watermark

KavaChart “polar charts” are sometimes called “Kiviat Diagrams”. These
charts draw multiple spoke axes, with a line for each dataset encircling the
center. By default, these charts assume one axis spoke per observation, and they
assume that all datasets have the same number of observations.

Kiviat Diagrams,
Radar Plots, Polar
Charts

com.ve.kavachart.applet.polarApp

Polar Chart
Parameters

value
type

effect

manualSpoking true|false If defined, you are responsible for determining how many
"spokes" should be drawn in this chart's axis representation

numSpokes integer The number of spokes in this chart's Axis system (default 4)
xAxisLabels List Labels for the edge of each spoke

KavaChart bubble charts use the applet com.ve.kavachart.applet.bubbleApp.
This chart draws circles at X,Y values specified by dataset0xValues and
dataset0yValues. The size of the circle is determined by dataset0y2Values.

Bubble Charts

com.ve.kavachart.applet.bubbleApp

 52

These charts may have filled or hollow circles, crossing X and Y axes, and
manual or automatic Z scaling. Z scaling refers to the relative size of the
bubbles, based on the overall set of Z (y2) values.

Bubble Chart
Parameters

value
type

effect

zAutoScaleOff anything Indicates that you want to set the Z scaling (in terms of a
percentage of the Y axis scale.

setZScale double
Sets the size of bubbles, relative to Y axis units. For example, if
the y2 value for a particular bubble is 10 and zScale is set to 2,
then the bubble’s diameter will be twice as big as a 10 unit
increment on the Y axis.

crossAxes Boolean Determines whether the X and Y axes should cross. If true, the
default crossing value is 0, 0.

xCrossVal double Where the Y axis should cross the X axis.

yCrossVal double Where the X axis should cross the Y axis.

Gantt charts are a specialized chart designed to show when tasks start and end.
This sort of chart is particularly useful for resource allocation and project
planning, but it can also be used to visually describe the progress of multiple
projects or processes.

Gantt Charts

com.ve.kavachart.applet.ganttApp

 53

This applet uses the special params dataset0StartDates and dataset0EndDates to
describe the start and end of each colored bar on track “0”. Each dataset is
arrayed along a single track. In the example above, we’re using dataset0 and
dataset1 to represent United States and Japanese leader’s tenure, respectively.
The tooltip label shows the start and end value along with the label (leader’s
name in this case)

A “discontinuity”, or invalid value, like “x” in place of a date creates a torn edge,
like the end point on the United States bar, when the param “useTearEdge” is
set to “true”.

Another special param for this applet, minBarWidth, ensures that very narrow
bars, like those in the applet above, will remain visible.

Parameter value type effect

dataset0StartDates list
A list of dates in “inputDateFormat” format, describing the
start times/dates for each item in a particular row.
Datasets 0 through 39 are available. Dataset names are
used to label the vertical axis.

dataset0EndDates list
A list of dates in “inputDateFormat” format, describing the
ends for each bar segment in a particular row. An un-
parseable date, like “XX”, would be interpreted as an
incomplete task.

dwellLabelDateFormat Date format A format string to describe start and end dates

dwellStartString String
This string defines the dwell label string for the start date.
In an applet, this string should have a '#' character where
the date will occur. Default is "Start #"

dwellEndString String
This string defines the dwell label string for the end date.
In an applet, this string should have a '#' character where
the date will occur. Default is "End #"

dwellIndefiniteString String This string defines the dwell label string for an indefinite
start/end. Default is "Indefinite"

Many combination charts are more useful if elements are assigned to different Y
axes. For example, you might want to compare trends for baseball scores and
basketball scores in the same chart. Baseball scores will be much lower, but
there still might be some discernable trend. In this case, you could just use
twinAxisLineApp to assign baseball scores the the right axis, and basketball
scores to the left axis.

Multi-Axis Charts

 54

com.ve.kavachart.applet.twinAxisBarAreaApp: assigns bar data to the left
axis and area data to the right (auxAxis).

com.ve.kavachart.applet.twinAxisBarLineApp: assigns line data to the left
axis and bar data to the right (auxAxis).

com.ve.kavachart.applet.twinAxisLineApp: uses numeric X values. Datasets
are assigned to the left axis by default, and the right (auxAxis) by parameter.

com.ve.kavachart.applet.twinAxisStackBarLineApp: uses a Line element for
the left axis, and a StackBar element for the right axis. Axis assignment is
implied by the dataset type.

To change the colors, fonts, title, scaling, etc. for the right axis, use “auxAxis” in
place of “yAxis”. For example, to set the title, you would use the parameter
“auxAxisTitle” for the right, and “yAxisTitle” for the left.

Parameter value type effect

datasetNType Bar | Line |
Area

This determines the DataRepresentation for datasetN. “Area” is
only available for TwinAxisBarAreaApp, Line is not available for
TwinAxisBarAreaApp, and so on. Stick is only available for
twinAxisDateComboApp

datasetNonRight true|false
This determines whether dataset N will be assigned to the
standard left axis or the auxilliary right axis. Only applicable to
twinAxisLineApp.

 55

plotLinesOn anything plot lines should display (default). Applicable to all of the Twin
Axis Charts except twinAxisBarAreaApp.

plotLinesOff anything Create a scatter plot by making plot lines invisible. Appicable to
all of the Twin Axis Charts except twinAxisBarAreaApp.

auxPlotLinesOn anything plot lines should display (default). Applicable to twinAxisLineApp.

auxPlotLinesOff anything Create a scatter plot by making plot lines invisible. Applicable to
twinAxisLineApp.

barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50%
of the available space. If you have more than one data series
defined, this value describes the total width of a cluster of bars.

barLabelsOn true|false determines whether labels will be drawn above each bar
barLabelAngle integer degrees to rotate bar labels
barLabelPrecision integer digits of precision for the bar labels

useValueLabels true|false determines whether the bar labels will be dataset labels or y
values

areaBaseline double sets the baseline value for this area

auxBarBaseline double sets the baseline value for the Stick's assigned to the aux axis in
TwinAxisDateComboApp

barWidth integer sets the width in pixels of the Stick's in TwinAxisDateComboApp

auxBarWidth integer sets the width in pixels for the Stick's assigned to the aux axis in
TwinAxisDateComboApp

Sectormap charts are very efficient visuals for displaying certain kinds of data.
The size of each square in a sectormap represents its relative size (Y value)
within the dataset, and the color of the rectangle represents another factor, such
as price change (X value). Each dataset is bounded by a rectangle that
represents the Dataset’s overall contribution to Y values for the entire set of
datasets.

Sectormap Charts

com.ve.kavachart.applet.sectorMapApp

 56

A sectormap could be used to represent financial values in a customer’s
portfolio, for example, where each data represents a market sector (e.g. finance,
transportation, utilities, etc.), and each item in the dataset represents a particular
security in that sector. You can tell at a glance how your portfolio is performing,
which sectors are doing well in the displayed time period, and which stocks are
having the most impact on your portfolio.

This applet is particularly useful when coupled with URL hyperlinks to
implement a drill-down facility.

Parameter value type effect

individualColors True|false Determines whether colors should come from
“dataset0Colors”

gradientColoring True|false Determines whether colors should be auto-graduated
from the dataset color to the “secondary color”

sectorSecondaryColor Color A second color to be used for gradient coloring

baseColor Color
A color to be used as a neutral value when “baseValue”
is used, giving effectively a 2 dimensional gradient –
dataset color to base color to secondary color

baseValue Double A value to be used for the baseColor.

Finance Applet Collection

This collection includes some standard charts for dealing with financial data:
com.ve.kavachart.applet.candlestickApp and
com.ve.kavachart.applet.hLOCApp use 4 Y values for each observation at a
single date or time. These are the high, low, open, and close prices for a
particular time period.

Candlestick and
OHLC Charts

com.ve.kavachart.applet.candlestickApp

com.ve.kavachart.applet.hLOCApp

 57

Special parameters for these applets:

Parameter value type effect

dataset0highValues list High price at observed dates
dataset0lowValues list Low price at observed dates
dataset0openValues list Open price at observed dates

dataset0closeValues list Close price at observed dates

dataset0dateValues list List of dates in “inputDateFormat”

CustomDatasetHandler URL A url containing rows of date,open,high,low.close values

com.ve.kavachart.applet.hiLoCloseApp is very similar to Candlestick and
OHLC charts, but it uses 3 Y values for each time period. These represent the
high, low, and closing prices for a particular time period. Close data is provided
with dataset Y values, high data is Y2 and low data is Y3.

com.ve.kavachart.applet.stickApp is similar to a bar chart, but draws a narrow
bar, or “stick’ at each time period. The width of these bars can be specified in
pixels. Multiple datasets do not stack or cluster.

Stick Charts

This chart is frequently combined with a hi-lo-close, candlestick or ohlc chart to
display price over volume:

 58

com.ve.kavachart.applet.finComboApp combines hiLoClose, line, and stick
elements into a single chart with multiple windows. The “splitWindows”
parameter determines whether all datasets will appear in a single window, or
each dataset should appear in a unique window.

Combination
Charts

All these charts can read data from a URL specified through the parameter
“customDatasetHandler”. The expected input stream has a column of dates or
times in the format specified by the “inputDateFormat” parameter, and then a
number of columns of Y data. Each dataset consumes the number of columns
appropriate for its data type. For example, in a candlestick chart, each dataset
uses the first column as the X axis period, and then uses 4 columns for high,
low, open, and close data. A stick would use the first column for the date or
time, and then use a single column for each dataset’s Y (or price, volume, etc.)
values.

Parameter value type effect

datasetNType HLOC|Stick|Line dataset N will be either Stick, HLOC, or Line, based on this
value. (finComboApp only).

splitWindow true|false
if true (default) each dataset type will be in a a separate window
with an independent Y axis. The X axis will be shared among all
dataset types.

stickWidth Integer Width (in pixels) of stick bars (stickApp only).

Some of the multiple axis combination charts and time oriented charts are also
frequently used for financial data.

The finance package also includes hi-lo bar charts: Hi-Lo Bar Charts

com.ve.kavachart.applet.hiLoBarApp

 59

com.ve.kavachart.applet.hHiLoApp

Parameter value
type

effect

barBaseline double bars ascend or descend from this value

barClusterWidth double
This determines how wide each bar should be. If the value is 1.0,
bar 1 will touch bar 2. If the value is 0.5, each bar will take 50% of
the available space. If you have more than one data series defined,
this value describes the total width of a cluster of bars.

individualColors true/false
In bar/column charts that normally use only the Dataset color for
drawing bars this will determine whether datum colors should be
used instead (default is false).

useValueLabels true/false determines whether the bar labels are the dataset labels or just the
y values (default is false)

KavaChart Enterprise Edition includes a “kcfinance” package, which is
designed specifically to support most common finance charts. This package
takes some coding to attach data sources properly, but it’s much more
sophisticated than the pre-packaged applets at representing financial data.
“Kcfinance” is especially well suited for generating images on a server.

It’s also worth noting that there are also several finance-oriented applets and
servlets in the com.ve.kavachart.contrib package, also part of the Enterprise
Edition. These include charts that overlay markers on candlestick charts, box-
jenkins statistical charts, histograms, and line charts with zooming, scrolling, and
multiple windows. Also, with a little bit of Java programming, you can combine
various KavaChart elements into an endless variety of custom finance charts.
These elements are described in more detail in the KavaChart Enterprise
Edition documentation.

 60

Appendix

A
Obtaining and Using
Your License Key
If you’re using the demo download of KavaChart applets, you have
undoubtedly noticed the demo behaviour. This section describes how to
obtain and use a license key to eliminate this behavior.

Obtaining a License Key
Your KavaChart license keys can be obtained from our web site
http://www.ve.com, under the “MyKavaChart” section. The license key is a
simple text string that eliminates the demo behavior when used as a parameter.

Using a License Key
What do you do with a license key? Simply add it as a parameter to your applet
definiton, like this:

<applet code=”com.ve.kavachart.applet.columnApp” …
<param name=”appletKey” value=”XXXX-xxx”>
<param name=”titleString” value=”hello world”>
</applet>

If this fails to remove the demo notices from your charts, please contact
support@ve.com to diagnose and repair the problem.

 61

http://www.ve.com/
mailto:support@ve.com

Index
Applet.. 16
Applets .. 38
Area Charts ... 38
ASP ... 4
Axis .12, 13, 18, 31, 32, 33, 34, 49, 52, 54, 55, 56
Background ... 14, 31
Bar charts .. 42, 49
Bubble Charts.. 52
Candlestick.. 20
ChartAppShell... 18
CODEBASE 18, 19, 26, 27
Color.. 27, 28
DataRepresentation... 14
Dataset... 12, 22, 35
Date ... 34
dateAreaApp ... 22
DateAxis.. 12
dateLineApp.. 22
delimiter .. 24
Discontinuities .. 26
Enterprise Java Beans ... 3
financial data ... 57
footprint... 17
GIF .. 30
HTML ... 17
hyperlink ... 37
Hyperlinks... 37
inputDateFormat ... 22
Java Virtual Machine .. 16

JavaScript ..4
JDBC ...23
JSP ...4, 21, 22, 23, 24
Kiviat ...52
LabelAxis ..12
legend ...29
Legend ...15, 31
line charts...41
linear regression ..41
locale..17, 29, 30, 34
logScaling...32
param ...18
ParameterParser...18
Pie Charts...43
Plotarea ..12, 13, 31
Scatter Charts ..39
scroll ..46, 51
scrollbar ...46, 51
servlet ..19, 21, 24, 34
Speedos..51
timestamp ..25
tooltip...4, 20
URL 4, 19, 24, 25, 26, 27, 29, 30, 37, 59
watermark ..52
ZIP ...18
zoom ..46
Zoom..46

 63

	What is KavaChart?
	Ways to use KavaChart
	KavaChart on the Client: Applets
	The KavaChart Wizard

	Getting Started
	Creating Dynamic Data
	Dynamic Data and Chart Intelligence
	Using the Chart Wizard

	Chart Parts
	X Axis and Y Axis
	Plotarea
	Background
	DataRepresentation
	Legend

	What’s an Applet?
	Why Applets?
	Anatomy of an applet definition
	Using CODEBASE

	KavaChart Applets and Data
	Dataset Parameters
	Time oriented charts
	Managing Date Formats

	URL Datasets
	URL Dataset Parameters
	Special time oriented URL parameters
	Discontinuities
	CODEBASE, again

	Color and Style Parameters
	General Color and Font Parameters
	Axis Related Parameters
	Date and Time Axis Parameters
	Dataset Related Color and Style Parameters
	Hyperlinks

	Basic Applet Collection
	Area Charts
	Line and Scatter Charts
	Bar and Column Charts
	Pie Charts
	Combinations: Bar-Area Chart
	Combinations: Bar-Line Chart
	Interactive Applets: spinningPie
	Interactive Applets: zoomLine
	Interactive Applets: scrollingLine

	Timeseries Applet Collection
	Date Area Charts
	Date Line Charts
	Strip Charts
	Time-oriented Bar Charts
	Multiple Axis Charts
	scrollingDateLine

	Specialty Applet Collection
	Speedos
	Kiviat Diagrams, Radar Plots, Polar Charts
	Bubble Charts
	Gantt Charts
	Multi-Axis Charts
	Sectormap Charts

	Finance Applet Collection
	Candlestick and OHLC Charts
	Stick Charts
	Combination Charts
	Hi-Lo Bar Charts

	Obtaining a License Key
	Using a License Key

